scholarly journals Impacts of bridge piers on the initiation of ice cover – an experimental study

2015 ◽  
Vol 63 (4) ◽  
pp. 327-333 ◽  
Author(s):  
Jun Wang ◽  
Fayi Shi ◽  
Pangpang Chen ◽  
Peng Wu ◽  
Jueyi Sui

AbstractIce jams in northern rivers during winter period significantly change the flow conditions due to the extra boundary of the flow. Moreover, with the presence of bridge piers in the channel, the flow conditions can be further complicated. Ice cover often starts from the front of bridge piers, extending to the upstream. With the accumulation of ice cover, ice jam may happen during early spring, which results in the notorious ice jam flooding. In the present study, the concentration of flowing ice around bridge piers has been evaluated based on experiments carried out in laboratory. The critical condition for the initiation of ice cover around bridge piers has been investigated. An equation for the critical floe concentration was developed. The equation has been validated by experimental data from previous studies. The proposed model can be used for the prediction of formation of ice cover in front of a bridge pier under certain conditions.

2007 ◽  
Vol 34 (6) ◽  
pp. 703-716 ◽  
Author(s):  
Spyros Beltaos

The breakup of the winter ice cover is a brief but seminal event in the regime of northern rivers, and in the life cycle of river and basin ecosystems. Breakup ice jams can cause extreme flood events, with major impacts on riverside communities, aquatic life, infrastructure, navigation, and hydropower generation. Related concerns are underscored by the issue of climate change and the faster warming that is predicted for northern parts of the globe. Advances in knowledge of breakup processes and related topics, achieved over the past 15 years or so, are outlined. They pertain to breakup initiation and ice-jam formation, ice-jam properties and numerical modelling of ice jams, waves generated by ice-jam releases, forecasting and mitigation methods, sediment transport, ecological aspects, and climate-change impacts. Major knowledge gaps are associated with the dynamic interaction of moving ice with the flow and with the stationary ice cover. Increasing computing capacity and remote sensing sophistication are expected to provide effective means for bridging these gaps. Key words: climate, ecology, forecasting, ice jam, modelling, onset, sediment, wave.


1991 ◽  
Vol 18 (6) ◽  
pp. 933-939 ◽  
Author(s):  
Darryl J. Calkins

Ice control structures placed in the streamwise direction of a river were analyzed to determine the effectiveness in reducing ice jam thicknesses. The theory describing the thickness for “wide” river ice jams was modified to analyze these longitudinal types, providing the computational verification that ice jam thicknesses could be reduced where the mode of ice cover thickening is internal collapse. These longitudinal structures appear to provide a new tool for modifying the river ice regime at freeze-up and possibly at breakup. By decreasing the ice jam thicknesses, which leads to lower stages, the structures have the potential for decreasing ice jam flood levels. The structures' ability to function is independent of the flow velocity and these structures should perform in rivers with velocities greater than the usual limitation of roughly 1 m/s associated with conventional cross-channel ice booms. Other possible applications include controlling ice movement at outlets from lakes, enhancing river ice cover progression, or even restraining the ice cover at breakup. A U.S. patent application has been filed jointly by the author and the U.S. Army Corps of Engineers. Key words: river ice, ice jams, ice control, hydraulic structures, ice booms.


1983 ◽  
Vol 10 (3) ◽  
pp. 538-548 ◽  
Author(s):  
Darryl J. Calkins

The equilibrium ice jam thickness given by Pariset et al. is modified to yield a clearer, consistent relationship between the flow hydraulics and thickness. The modified equations are analyzed with respect to a floating ice jam in the main channel with flow also occurring in the floodplain. The final derivation allows the expected ice jam thickness to be computed, given the bed and ice cover roughness coefficients, the channel characteristics, the water surface gradient, and the pre-breakup channel ice cover thickness. The analytical computation for the ice jam thicknesses is compared with prototype data on ice jam thicknesses from four shallow rivers which had significant floodplain flow with the ice jam event. A reasonable correlation between the predicted and measured ice jam thicknesses was obtained. The data suggests that once bankfull depth is exceeded the ice jam thickness does not increase appreciably because of flow diversion to the floodplain. Field measurements of the thickness of the remaining ice jam shear wall along with actual measurements of the ice jam thickness showed a close correlation between the two sets of data.


Author(s):  
S Shire ◽  
J Quarini ◽  
R S Ayala

As part of an extensive programme on the development of a novel pigging technique using crushed ice, work has been undertaken to investigate the propensity of fluids to mix in ducts when pumped. Experimental work suggests that the ice pig will tend to hold together, be self-healing, and maintain its identity under most flow conditions. The crushed ice making up the pig will tend to form a sharp interface between itself and the fluid following it. Any water resulting from melting ice will tend to be transported to the front of the pig, thus ensuring that the back of the pig will maintain its sharp interface. A simple theoretical model is proposed that is in qualitative agreement with the experimental results. Both experimental data and the proposed model are consistent with the literature. The importance of the self-healing properties of the ice pig is briefly explored.


2016 ◽  
Vol 64 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Jun Wang ◽  
Jian Hua ◽  
Jueyi Sui ◽  
Peng Wu ◽  
Tao Liu ◽  
...  

AbstractThe ice jam in a river can significantly change the flow field in winter and early spring. The presence of bridge piers further complicates the hydraulic process by interacting between the ice jam and bridge piers. Using the data collected from experiments in a laboratory flume, the evolution of an ice jam around bridge piers having three different diameters has been investigated in this study. Compared to results without-pier, it was found that the formation of an ice jam in the downstream of bridge pier is faster than that in the upstream. The thickness distribution of the ice jam shows clearly different characteristics in front and behind of bridge piers at different stages of the ice jam.


1986 ◽  
Vol 17 (4-5) ◽  
pp. 399-406
Author(s):  
Arve M. Tvede

The reservoir Sundsbarmvatn, in Southern Norway, is used for electricity production from November to May. Sundsbarmvatn has two main basins. Water from the upper basin, Mannerosfjorden, flows into the lower basin, Gullnesfjorden. The two basins are separated by a narrow sound with a sill. The regulation interval for Sundsbarmvatn is 612-574 m a.s.l., but the sill prevents Mannerosfjorden from being lowered below 580 m a.s.l. The water intake in Gullnesfjorden is 571 m a.s.l. The water temperature conditions has been studied during two winters when the reservoir water was released. This study shows that a marked thermocline was gradually developed at the depth of withdrawal in Gullnesfjorden. In the epilimnion layer the temperature is gradually lowered through the winter, but in the hypolimnion layer the temperature seems to stay constant through the winter. In Mannerosfjorden, however, we find no clear thermocline at the end of the winter. The remaining water was relatively warm with temperatures mainly above 3 °C. The sill between the two basins seems to have a strong influence on which depth the water is flowing out of Mannerosfjorden and hence on the temperature and circulation pattern in Gullnesfjorden. At the end of the winter season this flow is strengthening and initiates a homogeneous flow layer in Gullnesfjorden. This layer is dipping downwards towards the outlet tunnel. For this reason the temperature of the water leaving the power station is 0.4-1.2 °C colder than the hypolimnion temperature in the reservoir at the tunnel depth.


2020 ◽  
Vol 17 (6) ◽  
pp. 511-522 ◽  
Author(s):  
Alicia Graciela Cid ◽  
María Verónica Ramírez-Rigo ◽  
María Celeste Palena ◽  
Elio Emilio Gonzo ◽  
Alvaro Federico Jimenez-Kairuz ◽  
...  

Background: Mathematical modeling in modified drug release is an important tool that allows predicting the release rate of drugs in their surrounding environment and elucidates the transport mechanisms involved in the process. Objective: The aim of this work was to develop a mathematical model that allows evaluating the release profile of drugs from polymeric carriers in which the swelling phenomenon is present. Methods: Swellable matrices based on ionic complexes of alginic acid or carboxymethylcellulose with ciprofloxacin were prepared and the effect of adding the polymer sodium salt on the swelling process and the drug release was evaluated. Experimental data from the ciprofloxacin release profiles were mathematically adjusted, considering the mechanisms involved in each stage of the release process. Results: A proposed model, named “Dual Release” model, was able to properly fit the experimental data of matrices presenting the swelling phenomenon, characterized by an inflection point in their release profile. This entails applying the extended model of Korsmeyer-Peppas to estimate the percentage of drug released from the first experimental point up to the inflection point and then a model called Lumped until the final time, allowing to adequately represent the complete range of the drug release profile. Different parameters of pharmaceutical relevance were calculated using the proposed model to compare the profiles of the studied matrices. Conclusion: The “Dual Release” model proposed in this article can be used to predict the behavior of complex systems in which different mechanisms are involved in the release process.


Author(s):  
Adam Barylski ◽  
Mariusz Deja

Silicon wafers are the most widely used substrates for fabricating integrated circuits. A sequence of processes is needed to turn a silicon ingot into silicon wafers. One of the processes is flattening by lapping or by grinding to achieve a high degree of flatness and parallelism of the wafer [1, 2, 3]. Lapping can effectively remove or reduce the waviness induced by preceding operations [2, 4]. The main aim of this paper is to compare the simulation results with lapping experimental data obtained from the Polish producer of silicon wafers, the company Cemat Silicon from Warsaw (www.cematsil.com). Proposed model is going to be implemented by this company for the tool wear prediction. Proposed model can be applied for lapping or grinding with single or double-disc lapping kinematics [5, 6, 7]. Geometrical and kinematical relations with the simulations are presented in the work. Generated results for given workpiece diameter and for different kinematical parameters are studied using models programmed in the Matlab environment.


Author(s):  
Fakhreddine Landolsi ◽  
Fathi H. Ghorbel ◽  
James B. Dabney

AFM-based nanomanipulation is very challenging because of the complex mechanics in tip-sample interactions and the limitations in AFM visual sensing capabilities. In the present paper, we investigate the modeling of AFM-based nanomanipulation emphasizing the effects of the relevant interactions at the nanoscale. The major contribution of the present work is the use of a combined DMT-JKR interaction model in order to describe the complete collision process between the AFM tip and the sample. The coupling between the interactions and the friction at the nanoscale is emphasized. The efficacy of the proposed model to reproduce experimental data is demonstrated via numerical simulations.


2021 ◽  
Author(s):  
Gaston Latessa ◽  
Angela Busse ◽  
Manousos Valyrakis

<p>The prediction of particle motion in a fluid flow environment presents several challenges from the quantification of the forces exerted by the fluid onto the solids -normally with fluctuating behaviour due to turbulence- and the definition of the potential particle entrainment from these actions. An accurate description of these phenomena has many practical applications in local scour definition and to the design of protection measures.</p><p>In the present work, the actions of different flow conditions on sediment particles is investigated with the aim to translate these effects into particle entrainment identification through analytical solid dynamic equations.</p><p>Large Eddy Simulations (LES) are an increasingly practical tool that provide an accurate representation of both the mean flow field and the large-scale turbulent fluctuations. For the present case, the forces exerted by the flow are integrated over the surface of a stationary particle in the streamwise (drag) and vertical (lift) directions, together with the torques around the particle’s centre of mass. These forces are validated against experimental data under the same bed and flow conditions.</p><p>The forces are then compared against threshold values, obtained through theoretical equations of simple motions such as rolling without sliding. Thus, the frequency of entrainment is related to the different flow conditions in good agreement with results from experimental sediment entrainment research.</p><p>A thorough monitoring of the velocity flow field on several locations is carried out to determine the relationships between velocity time series at several locations around the particle and the forces acting on its surface. These results a relevant to determine ideal locations for flow investigation both in numerical and physical experiments.</p><p>Through numerical experiments, a large number of flow conditions were simulated obtaining a full set of actions over a fixed particle sitting on a smooth bed. These actions were translated into potential particle entrainment events and validated against experimental data. Future work will present the coupling of these LES models with Discrete Element Method (DEM) models to verify the entrainment phenomena entirely from a numerical perspective.</p>


Sign in / Sign up

Export Citation Format

Share Document