scholarly journals Iron Metallurgy Slags as a Potential Source of Critical Elements - Nb, Ta and REE

Mineralogia ◽  
2016 ◽  
Vol 47 (1-4) ◽  
pp. 15-28 ◽  
Author(s):  
Monika Kasina ◽  
Marek Michalik

Abstract The recovery of valuable metals from metallurgical slag disposals is a promising option to protect natural resources, limited due to technology development and increased consumption. The Ad-hoc Working Group on Defining Critical Raw Materials within the Raw Materials Supply Group has proposed a list of critical elements which have the greatest economic importance and meet the requirements of sustainable development in Europe. The goal of this study was to examine steelmaking- and blast-furnace slags from metallurgical processes to determine concentrations of elements of the greatest criticality for Poland, e.g. Nb, Ta and REE, and to discuss the viability of their recovery. Slag analyses indicate enrichment of REE relative to UCC, NASC and average chondrite compositions in blast-furnace slags and Nb and Ta in steelmaking slags. To make recovery of these critical elements reasonable and profitable, it is recommended that they be recovered together with other useful raw materials.

2016 ◽  
Vol 62 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Dorota Makowska ◽  
Faustyna Wierońska

AbstractPursuant to the new mineral policy of the European Union, searching for new sources of raw materials is required. Coal fly ash has long been considered as a potential source of a number of critical elements. Therefore, it is important to monitor the contents of the critical elements in fly ash from coal combustion. The paper presents the results of examinations of the contents of selected elements, i.e. beryllium, cobalt, chromium and germanium in fly ash from Polish power plants. The results of the conducted investigations indicate that the examined ash samples from bituminous coal combustion cannot be treated as a potential source of the analysed critical elements. The content of these elements in ash, though slightly higher than their average content in the sedimentary rocks, is, however, not high enough to make their recovery technologically and economically justified at this moment.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 975
Author(s):  
Slobodan Radusinović ◽  
Argyrios Papadopoulos

Research for critical raw materials is of special interest, due to their increasing demand, opulence of applications and shortage of supply. Bauxites, or bauxite residue after alumina extraction can be sources of critical raw materials (CRMs) due to their content of rare earth elements and other critical elements. Montenegrin bauxites and bauxite residue (red mud) are investigated for their mineralogy and geochemistry. The study of the CRM’s potential of the Montenegrin bauxite residue after the application of Bayer process, is performed for the first time. Montenegrin bauxites, (Jurassic bauxites from the Vojnik-Maganik and Prekornica ore regions from the Early Jurassic, Middle Jurassic-Oxfordian and Late Triassic paleorelief) are promising for their REE’s content (around 1000 ppm of ΣREE’s). More specifically, they are especially enriched in LREEs compared to HREEs. Regarding other CRMs and other elements, Ti, V, Zr, Nb, Sr and Ga could also be promising. In bauxite residue, the contents of Zr, Sr, V, Sc, La, Ce, Y, Ti and Nb are higher than those in bauxites. However, raw bauxites and bauxite residue as a secondary raw material can be considered as possible sources of CRMs.


2017 ◽  
Vol 143 ◽  
pp. 497-505 ◽  
Author(s):  
C.R. Cánovas ◽  
R. Pérez-López ◽  
F. Macías ◽  
S. Chapron ◽  
J.M. Nieto ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1656
Author(s):  
Maria Luisa Grilli ◽  
Daniele Valerini ◽  
Anca Elena Slobozeanu ◽  
Bogdan O. Postolnyi ◽  
Sebastian Balos ◽  
...  

Several applications where extreme conditions occur require the use of alloys often containing many critical elements. Due to the ever increasing prices of critical raw materials (CRMs) linked to their high supply risk, and because of their fundamental and large utilization in high tech products and applications, it is extremely important to find viable solutions to save CRMs usage. Apart from increasing processes’ efficiency, substitution, and recycling, one of the alternatives to preserve an alloy and increase its operating lifetime, thus saving the CRMs needed for its manufacturing, is to protect it by a suitable coating or a surface treatment. This review presents the most recent trends in coatings for application in high temperature alloys for aerospace engines. CRMs’ current and future saving scenarios in the alloys and coatings for the aerospace engine are also discussed. The overarching aim of this paper is to raise awareness on the CRMs issue related to the alloys and coating for aerospace, suggesting some mitigation measures without having the ambition nor to give a complete overview of the topic nor a turnkey solution.


2021 ◽  
Vol 232 (3) ◽  
Author(s):  
Juan Carlos Fortes ◽  
Aguasanta Miguel Sarmiento ◽  
Ana Teresa Luis ◽  
María Santisteban ◽  
José Miguel Davila ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8071
Author(s):  
Barbara Bielowicz

In an effort to identify new sources of critical raw materials (CRMs) possibility of recovering selected CRMs from Polish coals, chars, and ashes resulting from the combustion of coals and chars was investigated. The samples were collected from pilot fluidized bed gasification systems. The search for CRMs in coal gasification wastes has not been widely reported before. The study used 2 bituminous coal and 1 lignite sample; the concentration of individual critical raw materials (CRMs) was analyzed using the ICP-MS method. The obtained results were compared with Clarke values in coal ash and in the Earth’s crust, and with the adopted cut-off grade. As shown by the analysis, the highest concentrations of CRMs can be found in fly ash, mainly in samples from the eastern part of the Upper Silesian Coal Basin. This applies mostly to Be, Cs, or Sb due to the fact that their concentrations were found to be higher than the Clarke value in the Earth’s crust; the mentioned fly ashes could be used as potential sources of critical elements if appropriate recovery technologies are developed. In addition, the tested materials have elevated Se, Pb, Ni concentrations, but their recovery is currently not economically viable. Compared to the currently adopted cut-off grade levels, there are no critical elements in the analyzed coal gasification waste that could be recovered.


2021 ◽  
Vol 82 (3) ◽  
pp. 153-155
Author(s):  
Valcana Stoyanova ◽  
Atanas Hikov ◽  
Elitsa Stefanova ◽  
Zlatka Milakovska ◽  
Tomasz Abramowski ◽  
...  

The renewed importance of polymetallic nodules in the context of forecasted increasing demands for metals are discussed. Based on the Interoceanmetal Joint Organization’s (IOM) site-specific data obtained during the exploration activity in the Clarion-Clipperton Fracture Zone, a total of 272.5 Mt of nodules were estimated as economically reasonable for future mining for Ni, Cu, Co, and Mn. Additionally, data for REE and other critical elements in nodules as potential by-products are presented.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1437
Author(s):  
Katarzyna Ochromowicz ◽  
Kurt Aasly ◽  
Przemyslaw B. Kowalczuk

Polymetallic manganese nodules (PMN), cobalt-rich manganese crusts (CRC) and seafloor massive sulfides (SMS) have been identified as important resources of economically valuable metals and critical raw materials. The currently proposed mineral processing operations are based on metallurgical approaches applied for land resources. Thus far, significant endeavors have been carried out to describe the extraction of metals from PMN; however, to the best of the authors’ knowledge, it lacks a thorough review on recent developments in processing of CRC and SMS. This paper begins with an overview of each marine mineral. It is followed by a systematic review of common methods used for extraction of metals from marine mineral deposits. In this review, we update the information published so far in peer-reviewed and technical literature, and briefly provide the future perspectives for processing of marine mineral deposits.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 455
Author(s):  
Tomáš Vrbický ◽  
Richard Přikryl

Feldspar for ceramic/glass industries requires sufficiently low content of harmful colourants (Fe-, Ti-, Mn-bearing mineral phases). Hydrothermally altered albite-rich granites are increasingly used as feldspar raw material nowadays; however, they are often marked by increased content of colourants, which must be removed during the processing of feldspar ore. Parallel to the content of colourants, these phases show enrichment in some critical raw materials (CRMs), specifically of Nb, Ta, and Li. In the current study, the laboratory trials focused on the possibility of reprocessing of waste generated during basic magnetic separation of feldspar ore. Major aim of these trials was to search for a processing scheme that would allow for obtaining of mineralogically homogeneous fractions, part of which could be utilised as a source of CRMs. According to the results, combination of gravity, magnetic and heavy liquid separation is highly effective in obtaining of desirable concentrates. Feldspar ore processing waste thus presents potential source of CRMs; however, semi-industrial and full-scale trial must follow in order to prove the economic and environmental suitability of the suggested processing scheme.


2019 ◽  
Vol 70 (11) ◽  
pp. 3835-3842
Author(s):  
Mihai Dumitru Tudor ◽  
Mircea Hritac ◽  
Nicolae Constantin ◽  
Mihai Butu ◽  
Valeriu Rucai ◽  
...  

Direct use of iron ores in blast furnaces, without prior sintering leads to a reduction in production costs and energy consumption [1,2]. Fine-grained iron ores and iron oxides from ferrous wastes can be used together with coal dust and limestone in mixed injection technology through the furnace tuyeres. In this paper are presented the results of experimental laboratory investigations for establishing the physic-chemical characteristics of fine materials (iron ore, limestone, pulverized coal) susceptible to be used for mixed injection in blast furnace. [1,4]. The results of the experimental research have shown that all the raw materials analyzed can be used for mixt injection in blast furnace.


Sign in / Sign up

Export Citation Format

Share Document