What Can I Hope about the Earth’s Future Climate? Affective Resources for Overcoming Intergenerational Distance, Kantian and Otherwise

2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Diane Williamson

AbstractWhile climate change involves spatial, epistemological, social, and temporal remoteness, each type of distance can be bridged with strategies unique to it that can be borrowed from analogous moral problems. Temporal, or intergenerational, distance may actually be a motivational resource if we look at our natural feelings of hope for the future of the world, via Kant’s theory of political history, and for our children. Kant’s theory of hope also provides some basis for including future generations in a theory of justice.

Author(s):  
J. Macholdt ◽  
J. Glerup Gyldengren ◽  
E. Diamantopoulos ◽  
M. E. Styczen

Abstract One of the major challenges in agriculture is how climate change influences crop production, for different environmental (soil type, topography, groundwater depth, etc.) and agronomic management conditions. Through systems modelling, this study aims to quantify the impact of future climate on yield risk of winter wheat for two common soil types of Eastern Denmark. The agro-ecosystem model DAISY was used to simulate arable, conventional cropping systems (CSs) and the study focused on the three main management factors: cropping sequence, usage of catch crops and cereal straw management. For the case region of Eastern Denmark, the future yield risk of wheat does not necessarily increase under climate change mainly due to lower water stress in the projections; rather, it depends on appropriate management and each CS design. Major management factors affecting the yield risk of wheat were N supply and the amount of organic material added during rotations. If a CS is characterized by straw removal and no catch crop within the rotation, an increased wheat yield risk must be expected in the future. In contrast, more favourable CSs, including catch crops and straw incorporation, maintain their capacity and result in a decreasing yield risk over time. Higher soil organic matter content, higher net nitrogen mineralization rate and higher soil organic nitrogen content were the main underlying causes for these positive effects. Furthermore, the simulation results showed better N recycling and reduced nitrate leaching for the more favourable CSs, which provide benefits for environment-friendly and sustainable crop production.


2021 ◽  

Abstract This book is a collection of 77 expert opinions arranged in three sections. Section 1 on "Climate" sets the scene, including predictions of future climate change, how climate change affects ecosystems, and how to model projections of the spatial distribution of ticks and tick-borne infections under different climate change scenarios. Section 2 on "Ticks" focuses on ticks (although tick-borne pathogens creep in) and whether or not changes in climate affect the tick biosphere, from physiology to ecology. Section 3 on "Disease" focuses on the tick-host-pathogen biosphere, ranging from the triangle of tick-host-pathogen molecular interactions to disease ecology in various regions and ecosystems of the world. Each of these three sections ends with a synopsis that aims to give a brief overview of all the expert opinions within the section. The book concludes with Section 4 (Final Synopsis and Future Predictions). This synopsis attempts to summarize evidence provided by the experts of tangible impacts of climate change on ticks and tick-borne infections. In constructing their expert opinions, contributors give their views on what the future might hold. The final synopsis provides a snapshot of their expert thoughts on the future.


2017 ◽  
Vol 113 (7/8) ◽  
Author(s):  
Abiodun A. Ogundeji ◽  
Henry Jordaan

Climate change and its impact on already scarce water resources are of global importance, but even more so for water scarce countries. Apart from the effect of climate change on water supply, the chill unit requirement of deciduous fruit crops is also expected to be affected. Although research on crop water use has been undertaken, researchers have not taken the future climate into consideration. They also have focused on increasing temperatures but failed to relate temperature to chill unit accumulation, especially in South Africa. With a view of helping farmers to adapt to climate change, in this study we provide information that will assist farmers in their decision-making process for adaptation and in the selection of appropriate cultivars of deciduous fruits. Crop water use and chill unit requirements are modelled for the present and future climate. Results show that, irrespective of the irrigation system employed, climate change has led to increases in crop water use. Water use with the drip irrigation system was lower than with sprinkler irrigation as a result of efficiency differences in the irrigation technologies. It was also confirmed that the accumulated chill units will decrease in the future as a consequence of climate change. In order to remain in production, farmers need to adapt to climate change stress by putting in place water resources and crop management plans. Thus, producers must be furnished with a variety of adaptation or management strategies to overcome the impact of climate change.


Author(s):  
Nancy Langston

Lake Superior is one of the fastest warming lakes in the world, leading to enormous changes in its ecosystems and human communities. How might changing climates affect the mobilization of contaminants in the Lake Superior basin? How might those contaminants affect resiliency toward climate change? And what can we do about it?


2009 ◽  
Vol 22 (8) ◽  
pp. 1944-1961 ◽  
Author(s):  
Bariş Önol ◽  
Fredrick H. M. Semazzi

Abstract In this study, the potential role of global warming in modulating the future climate over the eastern Mediterranean (EM) region has been investigated. The primary vehicle of this investigation is the Abdus Salam International Centre for Theoretical Physics Regional Climate Model version 3 (ICTP-RegCM3), which was used to downscale the present and future climate scenario simulations generated by the NASA’s finite-volume GCM (fvGCM). The present-day (1961–90; RF) simulations and the future climate change projections (2071–2100; A2) are based on the Intergovernmental Panel on Climate Change (IPCC) greenhouse gas (GHG) emissions. During the Northern Hemispheric winter season, the general increase in precipitation over the northern sector of the EM region is present both in the fvGCM and RegCM3 model simulations. The regional model simulations reveal a significant increase (10%–50%) in winter precipitation over the Carpathian Mountains and along the east coast of the Black Sea, over the Kackar Mountains, and over the Caucasus Mountains. The large decrease in precipitation over the southeastern Turkey region that recharges the Euphrates and Tigris River basins could become a major source of concern for the countries downstream of this region. The model results also indicate that the autumn rains, which are primarily confined over Turkey for the current climate, will expand into Syria and Iraq in the future, which is consistent with the corresponding changes in the circulation pattern. The climate change over EM tends to manifest itself in terms of the modulation of North Atlantic Oscillation. During summer, temperature increase is as large as 7°C over the Balkan countries while changes for the rest of the region are in the range of 3°–4°C. Overall the temperature increase in summer is much greater than the corresponding changes during winter. Presentation of the climate change projections in terms of individual country averages is highly advantageous for the practical interpretation of the results. The consistence of the country averages for the RF RegCM3 projections with the corresponding averaged station data is compelling evidence of the added value of regional climate model downscaling.


Author(s):  
Guillaume Rohat ◽  
Stéphane Goyette ◽  
Johannes Flacke

Purpose Climate analogues have been extensively used in ecological studies to assess the shift of ecoregions due to climate change and the associated impacts on species survival and displacement, but they have hardly been applied to urban areas and their climate shift. This paper aims to use climate analogues to characterize the climate shift of cities and to explore its implications as well as potential applications of this approach. Design/methodology/approach The authors propose a methodology to match the current climate of cities with the future climate of other locations and to characterize cities’ climate shift velocity. Employing a sample of 90 European cities, the authors demonstrate the applicability of this method and characterize their climate shift from 1951 to 2100. Findings Results show that cities’ climate shift follows rather strictly north-to-south transects over the European continent and that the average southward velocity is expected to double throughout the twenty-first century. These rapid shifts will have direct implications for urban infrastructure, risk management and public health services. Originality/value These findings appear to be potentially useful for raising awareness of stakeholders and urban dwellers about the pace, magnitude and dynamics of climate change, supporting identification of the future climate impacts and vulnerabilities and implementation of readily available adaptation options, and strengthening cities’ cooperation within climate-related networks.


Earth ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 45-71
Author(s):  
Dhurba Neupane ◽  
Pramila Adhikari ◽  
Dwarika Bhattarai ◽  
Birendra Rana ◽  
Zeeshan Ahmed ◽  
...  

Climate prediction models suggest that agricultural productivity will be significantly affected in the future. The expected rise in average global temperature due to the higher release of greenhouse gases (GHGs) into the atmosphere and increased depletion of water resources with enhanced climate variability will be a serious threat to world food security. Moreover, there is an increase in the frequency and severity of long-lasting drought events over 1/3rd of the global landmass and five times increase in water demand deficits during the 21st century. The top three cereals, wheat (Triticum aestivum), maize (Zea mays), and rice (Oryza sativa), are the major and staple food crops of most people across the world. To meet the food demand of the ever-increasing population, which is expected to increase by over 9 billion by 2050, there is a dire need to increase cereal production by approximately 70%. However, we have observed a dramatic decrease in area of fertile and arable land to grow these crops. This trend is likely to increase in the future. Therefore, this review article provides an extensive review on recent and future projected area and production, the growth requirements and greenhouse gas emissions and global warming potential of the top three cereal crops, the effects of climate change on their yields, and the morphological, physiological, biochemical, and hormonal responses of plants to drought. We also discuss the potential strategies to tackle the effects of climate change and increase yields. These strategies include integrated conventional and modern molecular techniques and genomic approach, the implementation of agronomic best management (ABM) practices, and growing climate resilient cereal crops, such as millets. Millets are less resource-intensive crops and release a lower amount of greenhouse gases compared to other cereals. Therefore, millets can be the potential next-generation crops for research to explore the climate-resilient traits and use the information for the improvement of major cereals.


Author(s):  
K. Lin ◽  
W. Zhai ◽  
S. Huang ◽  
Z. Liu

Abstract. The impact of future climate change on the runoff for the Dongjiang River basin, South China, has been investigated with the Soil and Water Assessment Tool (SWAT). First, the SWAT model was applied in the three sub-basins of the Dongjiang River basin, and calibrated for the period of 1970–1975, and validated for the period of 1976–1985. Then the hydrological response under climate change and land use scenario in the next 40 years (2011–2050) was studied. The future weather data was generated by using the weather generators of SWAT, based on the trend of the observed data series (1966–2005). The results showed that under the future climate change and LUCC scenario, the annual runoff of the three sub-basins all decreased. Its impacts on annual runoff were –6.87%, –6.54%, and –18.16% for the Shuntian, Lantang, and Yuecheng sub-basins respectively, compared with the baseline period 1966–2005. The results of this study could be a reference for regional water resources management since Dongjiang River provides crucial water supplies to Guangdong Province and the District of Hong Kong in China.


2021 ◽  
Author(s):  
Katharina Enigl ◽  
Matthias Schlögl ◽  
Christoph Matulla

<p>Climate change constitutes a main driver of altering population dynamics of spruce bark beetles (<em>Ips typographus</em>) all over Europe. Their swarming activity as well as development rate are strongly dependent on temperature and the availability of brood trees. Especially over the last years, the latter has substantially increased due to major drought events which led to a widespread weakening of spruce stands. Since both higher temperatures and longer drought periods are to be expected in Central Europe in the decades ahead, foresters face the challenges of maintaining sustainable forest management and safeguarding future yields. One approach used to foster decision support in silviculture relies on the identification of possible alternative tree species suitable for adapting to expected future climate conditions in threatened regions. </p><p>In this study, we focus on the forest district of Horn, a region in Austria‘s north east that is beneficially influenced by the mesoclimate of the Pannonian basin. This fertile yet dry area has been severely affected by mass propagations of <em>Ips typographus</em> due to extensive droughts since 2017, and consequently has suffered from substantial forest damage in recent years. The urgent need for action was realized and has expedited the search for more robust alternative species to ensure sustainable silviculture in the area.</p><p>The determination of suitable tree species is based on the identification of regions whose climatic conditions in the recent past are similar to those that are to be expected in the forest district of Horn in the future. To characterize these conditions, we consider 19 bioclimatic variables that are derived from monthly temperature and rainfall values. Using downscaled CMIP6 projections with a spatial resolution of 2.5 minutes, we determine future conditions in Horn throughout the 21st century. By employing 20-year periods from 2021 to 2100 for the scenarios SSP1-26, SSP2-45, SSP3-70 and SSP5-85,  and comparing them to worldwide past climate conditions, we obtain corresponding bioclimatic regions for four future time slices until the end of the century. The Euclidian distance is applied as measure of similarity, effectively yielding similarity maps on a continuous scale. In order to account for the spatial variability within the forest district, this procedure is performed for the colder northwest and the warmer southeast of the area, individually seeking similar bioclimatic regions for each of these two subregions. Results point to Eastern Europe as well as the Po Valley in northern Italy as areas exhibiting the highest similarity to the future climate in this North-Eastern part of Austria.</p>


Sign in / Sign up

Export Citation Format

Share Document