scholarly journals Analysis of X-ray structure, dielectric properties and AC conductivity of (4E)-2-amino-3-cyanobenzo[b]oxocin-6-one

2016 ◽  
Vol 34 (2) ◽  
pp. 386-392 ◽  
Author(s):  
H.A.M. Ali ◽  
Magdy A. Ibrahim

AbstractThe crystal structure of (4E)-2-amino-3-cyanobenzo[b]oxocin-6-one, denoted as 4(E)-ACBO, was analyzed using X-ray diffraction technique. The dielectric and AC electrical conductivity measurements of the bulk 4(E)-ACBO in the form of pellet were studied in the range of frequency 42 Hz to 5 MHz and the temperature range of 303 K to 373 K. The temperature and frequency dependence of dielectric constant (∊1), dielectric loss (∊2) and AC electrical conductivity (σAC) were investigated. The relaxation time (τ) for electrons to hop over a barrier of height WH was calculated at different temperatures. The AC activation energy was determined from the temperature dependence of σAC at different frequencies.

2021 ◽  
Author(s):  
A. Mallikarjuna ◽  
N. Suresh Kumar ◽  
T. Anil Babu ◽  
S. Ramesh ◽  
Chandra Babu Naidu K

Abstract (1-x) (Al0.2La0.8TiO3) + (x) (BiZnFeO3) (x = 0.2 - 0.8) [ALTBZFO] nanocomposites were synthesized via hydrothermal method. The X-ray diffraction patterns indicated the phase transformation from tetragonal to cubic for x = 0.2 to 0.4 - 0.8 samples, respectively. The surface morphology showed the existence of nanospheres like structures. At 1 MHz frequency also, the dielectric constant was increased from 230 to 710 for x = 0.2 – 0.6 samples, respectively. But, interestingly, x = 0.6 nanocomposite exhibited the negative dielectric behavior having the dielectric constant (ε') ~ -58.5 and dielectric loss (ε") ~ -417 at 8 MHz. Likewise, x = 0.6 sample showed ac-electrical conductivity (σac) -0.159 S/cm at 6 MHz. Hence, these kinds of materials can provide high charge stored capacitor, and perfect absorber applications.


1994 ◽  
Vol 359 ◽  
Author(s):  
Jun Chen ◽  
Haiyan Zhang ◽  
Baoqiong Chen ◽  
Shaoqi Peng ◽  
Ning Ke ◽  
...  

ABSTRACTWe report here the results of our study on the properties of iodine-doped C60 thin films by IR and optical absorption, X-ray diffraction, and electrical conductivity measurements. The results show that there is no apparent structural change in the iodine-doped samples at room temperature in comparison with that of the undoped films. However, in the electrical conductivity measurements, an increase of more that one order of magnitude in the room temperature conductivity has been observed in the iodine-doped samples. In addition, while the conductivity of the undoped films shows thermally activated temperature dependence, the conductivity of the iodine-doped films was found to be constant over a fairly wide temperature range (from 20°C to 70°C) exhibiting a metallic feature.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1034
Author(s):  
Oladipo Folorunso ◽  
Yskandar Hamam ◽  
Rotimi Sadiku ◽  
Suprakas Sinha Ray ◽  
Neeraj Kumar

In this study, a hybrid of graphene nanoplatelets with a polypyrrole having 20 wt.% loading of carbon-black (HGPPy.CB20%), has been fabricated. The thermal stability, structural changes, morphology, and the electrical conductivity of the hybrids were investigated using thermogravimetric analyzer, differential scanning calorimeter, X-ray diffraction analyzer, scanning electron microscope, and laboratory electrical conductivity device. The morphology of the hybrid shows well dispersion of graphene nanoplatelets on the surface of the PPy.CB20% and the transformation of the gravel-like PPy.CB20% shape to compact spherical shape. Moreover, the hybrid’s electrical conductivity measurements showed percolation threshold at 0.15 wt.% of the graphene nanoplatelets content and the curve is non-linear. The electrical conductivity data were analyzed by comparing different existing models (Weber, Clingerman and Taherian). The results show that Taherian and Clingerman models, which consider the aspect ratio, roundness, wettability, filler electrical conductivity, surface interaction, and volume fractions, closely described the experimental data. From these results, it is evident that Taherian and Clingerman models can be modified for better prediction of the hybrids electrical conductivity measurements. In addition, this study shows that graphene nanoplatelets are essential and have a significant influence on the modification of PPy.CB20% for energy storage applications.


2021 ◽  
Vol 54 (5) ◽  
pp. 1317-1326
Author(s):  
Arsen Petrenko ◽  
Nataliya Novikova ◽  
Alexander Blagov ◽  
Anton Kulikov ◽  
Yury Pisarevskii ◽  
...  

The anisotropy of deformations in potassium acid phthalate crystals arising under the action of an external electric field up to 1 kV mm−1 applied along the [001] polar axis was studied using X-ray diffraction methods at room temperature. Electrical conductivity was measured and rocking curves for reflections 400, 070 and 004 were obtained by time-resolved X-ray diffractometry in Laue and Bragg geometries. Two saturation processes were observed from the time dependences of the electrical conductivity. A shift in the diffraction peaks and a change in their intensity were found, which indicated a deformation of the crystal structure. Rapid piezoelectric deformation and reversible relaxation-like deformation, kinetically similar to the electrical conductivity of a crystal, were revealed. The deformation depended on the polarity and strength of the applied field. The deformation was more noticeable in the [100] direction and was practically absent in the [001] direction of the applied field. X-ray diffraction analysis revealed a disordered arrangement of potassium atoms, i.e. additional positions and vacancies. The heights of potential barriers between the positions of K+ ions and the paths of their possible migration in the crystal structure of potassium acid phthalate were determined. The data obtained by time-resolved X-ray diffractometry and X-ray structure analysis, along with additional electrophysical measurements, allow the conclusion that the migration of charge carriers (potassium cations) leads to lateral deformation of the crystal structure of potassium phthalate in an external electric field.


2017 ◽  
Vol 6 (4) ◽  
pp. 77
Author(s):  
N A M Shahin ◽  
S Abd El Mongy ◽  
R Kamal ◽  
A B El- Bially ◽  
A A Shabaka ◽  
...  

Polyaniline (PANI) - Polyvinyl alcohol (PVA) nanocomposite were prepared using laser irradiation method. X-ray diffraction results showed that, (PANI/PVA) nanocomposite exhibited amorphous nature of polymer. The electronic transition will be studied using Ultraviolet-Visible spectrometer (UV-Vis). The real part of dielectric constant (έ) and imaginary part (ε") were studied. Also, the relaxation time was calculated.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1498 ◽  
Author(s):  
Abdul Hafeez ◽  
Zareen Akhter ◽  
John F. Gallagher ◽  
Nawazish Ali Khan ◽  
Asghari Gul ◽  
...  

Bis-aldehyde monomers 4-(4′-formyl-phenoxy)benzaldehyde (3a), 3-methoxy-4-(4′-formyl-phenoxy)benzaldehyde (3b), and 3-ethoxy-4-(4′-formyl-phenoxy)benzaldehyde (3c) were synthesized by etherification of 4-fluorobenzaldehyde (1) with 4-hydroxybenzaldehyde (2a), 3-methoxy-4-hydroxybenzaldehyde (2b), and 3-ethoxy-4-hydroxybenzaldehyde (2c), respectively. Each monomer was polymerized with p-phenylenediamine and 4,4′-diaminodiphenyl ether to yield six poly(azomethine)s. Single crystal X-ray diffraction structures of 3b and 3c were determined. The structural characterization of the monomers and poly(azomethine)s was performed by FT-IR and NMR spectroscopic techniques and elemental analysis. Physicochemical properties of polymers were investigated by powder X-ray diffraction, thermogravimetric analysis (TGA), viscometry, UV–vis, spectroscopy and photoluminescence. These polymers were subjected to electrical conductivity measurements by the four-probe method, and their conductivities were found to be in the range 4.0 × 10−5 to 6.4 × 10−5 Scm−1, which was significantly higher than the values reported so far.


2013 ◽  
Vol 68 (10) ◽  
pp. 1103-1107 ◽  
Author(s):  
Heike Haller ◽  
Michael Hog ◽  
Franziska Scholz ◽  
Harald Scherer ◽  
Ingo Krossing ◽  
...  

[HMIM][Br9] ([HMIM]=1-hexyl-3-methylimidazolium) has been investigated by Raman spectroscopy, single-crystal X-ray diffraction and NMR spectroscopy. Conductivity measurements show a high electrical conductivity like other polybromides.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Hamadi Hamza ◽  
Mohamed Faouzi Zid ◽  
Ahmed Driss

LiNa5K3Mo11As3O45 is a new inorganic compound. It was synthesized by a solid state method. The crystal structure has been studied by single crystal X-ray analysis. The R-values reached 2.8%. The title compound crystallizes in the triclinic system, space group P-1, with a = 10.550 (2) Å, b = 11.723 (2) Å, c = 17.469 (3) Å, α = 102.35 (3)°, β = 87.61 (2)°, and γ = 111.03 (3)°. The anionic unit [Mo11As3O45]9− is formed by nine MoO6 octahedra, two MoO5 trigonal bipyramids, and three AsO4 tetrahedra. The association of [Mo11As3O45]9− units, running along [010], leads to a one-dimensional framework. Li, K, and Na are located in the space surrounding the anionic ribbons. This material was characterized by SEM microscopy, IR spectroscopy, and powder X-ray diffraction. The electrical conductivity was investigated from 528 K to 673 K by impedance complex followed by DSC spectroscopy.


2019 ◽  
Vol 27 (2) ◽  
pp. 228-237 ◽  
Author(s):  
Rashed T. Rasheed ◽  
Sariya D. Al-Algawi ◽  
Rosul M. N.

Manganese dioxide (MnO2) nanopowder has been synthesized by hydrothermal method. MnO2 was annealed at different temperatures (250, 400, 550, 700˚C). The crystal structure and surface morphology of these nanostructures were characterized by X-ray diffraction (XRD), Atomic Force Microscope (AFM) and Scanning Electron Microscopy (SEM). The catalase mimic activity (catalytic activity) of MnO2 against hydrogen peroxide (H2O2) was studied by using the new method and found that 400˚C is the best annealing temperature.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
M. Ortiz-Domínguez ◽  
O. A. Gómez-Vargas ◽  
G. Ares de Parga ◽  
G. Torres-Santiago ◽  
R. Velázquez-Mancilla ◽  
...  

An indispensable tool to choose the suitable process parameters for obtaining boride layer of an adequate thickness is the modeling of the boriding kinetics. In this work, two mathematical approaches were used in order to determine the value of activation energy in the Fe2B layers on ASTM A36 steel during the iron powder-pack boriding in the temperature range of 1123–1273 K for treatment times between 2 and 8 h. The first approach was based on the mass balance equation at the interface (Fe2B/substrate) and the solution of Fick’s second law under steady state (without time dependent). The second approach was based on the same mathematical principles as the first approach for one-dimensional analysis under non-steady-state condition. The measurements of the thickness (Fe2B), for different temperatures of boriding, were used for calculations. As a result, the boron activation energy for the ASTM A36 steel was estimated as 161 kJ·mol−1. This value of energy was compared between both models and with other literature data. The Fe2B layers grown on ASTM A36 steel were characterized by use of the following experimental techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray Spectroscopy (EDS). Finally, the experimental value of Fe2B layer’s thickness obtained at 1123 K with an exposure time of 2.5 h was compared with the predicted thicknesses by using these two approaches. A good concordance was achieved between the experimental data and the simulated results.


Sign in / Sign up

Export Citation Format

Share Document