scholarly journals All-dielectric metasurfaces for polarization manipulation: principles and emerging applications

Nanophotonics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 3755-3780 ◽  
Author(s):  
Yueqiang Hu ◽  
Xudong Wang ◽  
Xuhao Luo ◽  
Xiangnian Ou ◽  
Ling Li ◽  
...  

AbstractMetasurfaces, composed of specifically designed subwavelength units in a two-dimensional plane, offer a new paradigm to design ultracompact optical elements that show great potentials for miniaturizing optical systems. In the past few decades, metasurfaces have drawn broad interests in multidisciplinary communities owing to their capability of manipulating various parameters of the light wave with plentiful functionalities. Among them, pixelated polarization manipulation in the subwavelength scale is a distinguished ability of metasurfaces compared to traditional optical components. However, the inherent ohmic loss of plasmonic-type metasurfaces severely hinders their broad applications due to the low efficiency. Therefore, metasurfaces composed of high-refractive-index all-dielectric antennas have been proposed to achieve high-efficiency devices. Moreover, anisotropic dielectric nanostructures have been shown to support large refractive index contrast between orthogonal polarizations of light and thus provide an ideal platform for polarization manipulation. Herein, we present a review of recent progress on all-dielectric metasurfaces for polarization manipulation, including principles and emerging applications. We believe that high efficient all-dielectric metasurfaces with the unprecedented capability of the polarization control can be widely applied in areas of polarization detection and imaging, data encryption, display, optical communication and quantum optics to realize ultracompact and miniaturized optical systems.

2013 ◽  
Vol 372 ◽  
pp. 41-44
Author(s):  
Shi Bao Li ◽  
Da Ming Wu ◽  
Xiu Ting Zheng ◽  
Ying Liu ◽  
Yan Liu

The reflective properties and illumination uniformity of the polymer can be improved effectively with microstructure on the surface and scattering particles with high refractive index inside. The paper is based on the early research of the author. The reflector cup is processed by injection molding using the polymer of high reflective properties, which can achieve high efficiency of the light energy utilization and the uniform emergent ray.


2021 ◽  
Author(s):  
Kiyanoush Goudarzi ◽  
Moonjoo Lee

Abstract This study demonstrates the appearance of super intense and wide Mie bandgaps in metamaterials composed of germanium rods in air that tolerate some disordering of rod position and rod radius under transverse magnetic (TM) polarized light waves. Results for Mie bandgap modes TM01 and TM11 tolerate rod-position disordering of 50%, and rod-radius disordering of 34 and 20%, respectively. Using these characteristics of TM11 under position and radius disordering, ultra-narrow straight, L-shaped and crossing waveguides that contain 14, four, and two rows of Ge rods in air are designed. Also, it is shown that TE01 Mie bandgap appear in metamaterials contain high refractive index, and disappear in metamaterials with lower refractive index such as silicon; in contrast, a new phenomenon of intense and broadband TM01, TM11, and TM21 in metamaterials with lower refractive index such as silicon appear. Also, in Si-based metamaterials, TM01 tolerates high rod-position and rod-radius disordering of 50% and 34%, respectively, and TM11 shows robustness to rod-position and rod-radius of 20%. This strong tolerance of disordering of TM modes in silicon and germanium metamaterials opens a new way to design small, high-efficient, and easy-fabricable optical devices for optical integrated circuits.


1998 ◽  
Vol 23 (7) ◽  
pp. 552 ◽  
Author(s):  
Simion Astilean ◽  
Philippe Lalanne ◽  
Pierre Chavel ◽  
Edmond Cambril ◽  
Huguette Launois

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
B. Luk`yanchuk ◽  
L. M. Vasilyak ◽  
V. Ya. Pecherkin ◽  
S. P. Vetchinin ◽  
V. E. Fortov ◽  
...  

AbstractResonant scattering of electromagnetic waves is a widely studied phenomenon with a vast range of applications that span completely different fields, from astronomy or meteorology to spectroscopy and optical circuitry. Despite being subject of intensive research for many decades, new fundamental aspects are still being uncovered, in connection with emerging areas, such as metamaterials and metasurfaces or quantum and topological optics, to mention some. In this work, we demonstrate yet one more novel phenomenon arising in the scattered near field of medium sized objects comprising high refractive index materials, which allows the generation of colossal local magnetic fields. In particular, we show that GHz radiation illuminating a high refractive index ceramic sphere creates instant magnetic near-fields comparable to those in neutron stars, opening up a new paradigm for creation of giant magnetic fields on the millimeter's scale.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luca Sortino ◽  
Panaiot G. Zotev ◽  
Catherine L. Phillips ◽  
Alistair J. Brash ◽  
Javier Cambiasso ◽  
...  

AbstractSingle photon emitters in atomically-thin semiconductors can be deterministically positioned using strain induced by underlying nano-structures. Here, we couple monolayer WSe2 to high-refractive-index gallium phosphide dielectric nano-antennas providing both optical enhancement and monolayer deformation. For single photon emitters formed on such nano-antennas, we find very low (femto-Joule) saturation pulse energies and up to 104 times brighter photoluminescence than in WSe2 placed on low-refractive-index SiO2 pillars. We show that the key to these observations is the increase on average by a factor of 5 of the quantum efficiency of the emitters coupled to the nano-antennas. This further allows us to gain new insights into their photoluminescence dynamics, revealing the roles of the dark exciton reservoir and Auger processes. We also find that the coherence time of such emitters is limited by intrinsic dephasing processes. Our work establishes dielectric nano-antennas as a platform for high-efficiency quantum light generation in monolayer semiconductors.


2019 ◽  
Author(s):  
Mohammad Atif Faiz Afzal ◽  
Mojtaba Haghighatlari ◽  
Sai Prasad Ganesh ◽  
Chong Cheng ◽  
Johannes Hachmann

<div>We present a high-throughput computational study to identify novel polyimides (PIs) with exceptional refractive index (RI) values for use as optic or optoelectronic materials. Our study utilizes an RI prediction protocol based on a combination of first-principles and data modeling developed in previous work, which we employ on a large-scale PI candidate library generated with the ChemLG code. We deploy the virtual screening software ChemHTPS to automate the assessment of this extensive pool of PI structures in order to determine the performance potential of each candidate. This rapid and efficient approach yields a number of highly promising leads compounds. Using the data mining and machine learning program package ChemML, we analyze the top candidates with respect to prevalent structural features and feature combinations that distinguish them from less promising ones. In particular, we explore the utility of various strategies that introduce highly polarizable moieties into the PI backbone to increase its RI yield. The derived insights provide a foundation for rational and targeted design that goes beyond traditional trial-and-error searches.</div>


2013 ◽  
Vol 28 (6) ◽  
pp. 671-676 ◽  
Author(s):  
Yu-Qing ZHANG ◽  
Li-Li ZHAO ◽  
Shi-Long XU ◽  
Chao ZHANG ◽  
Xiao-Ying CHEN ◽  
...  

Author(s):  
Chen-Jing Sun ◽  
Li-Ping Zhao ◽  
Rui Wang

: With the development of industrialization, the global environmental pollution and energy crisis are becoming increasingly serious. Organic pollutants pose a serious health threat to human beings and other organisms. The removal of organic pollutants in environment has become a global challenge. The photocatalytic technology has been widely used in the degradation of organic pollutants with its characteristics of simple process, high efficiency, thorough degradation and no secondary pollution. However, the single photocatalyst represented by TiO2 has disadvantages of low light utilization rate and high recombination rate of photocarriers. Building heterojunction is considered one of the most effective methods to enhance the photocatalytic performance of single photocatalyst, which can improve the separation efficiency of photocarriers and utilization of visible light. The classical heterojunction can be divided into four different cases: type I, typeⅡ, p–n heterojunctions and Z-scheme junction. In this paper, the recent progress in the treatment of organic pollution by heterostructure photocatalysts is summarized and the mechanism of heterostructure photocatalysts for the treatment of organic pollutants is reviewed. It is expected that this paper can deepen the understanding of heterostructure photocatalysts and provide guidance for high efficient photocatalytic degradation of organic pollutants in the future.


Sign in / Sign up

Export Citation Format

Share Document