scholarly journals Grayscale-patterned metal-hydrogel-metal microscavity for dynamic multi-color display

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jian Zhang ◽  
Dandan Wang ◽  
Yunbin Ying ◽  
Hao Zhou ◽  
Xiaokai Liu ◽  
...  

Abstract Dynamic structural color based on tunable optical resonance plays a key role in applications including encryption visualization, camouflage and colorimetric sensing. However, the current design requires either complex growth processes of the high-quality tunable materials or complicated circuit designs. This work makes a humidity-swelling hydrogel layer for metal–insulator–metal (MIM) structure in the dynamic multi-color display. Here, polyvinyl alcohol (PVA) hydrogel structure is patterned through grayscale e-beam lithography and the controlled PVA thickness leads the programmable reflective resonance covering the entire visible range. By varying the ambient humidity between 9.8 and 90.1% RH, the reflective resonance of the structure is tailored across a wavelength range over 100 nm. Our materials platform of humidity-sensitive hydrogel resist presents a novel approach of the stepwise and reversible optical tunability for photonic devices.

2019 ◽  
Vol 11 (44) ◽  
pp. 41668-41675 ◽  
Author(s):  
Dan Chen ◽  
Tieqiang Wang ◽  
Guoshuai Song ◽  
Yunhao Du ◽  
Jinqiu Lv ◽  
...  

Nanophotonics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 823-832 ◽  
Author(s):  
Amir Ghobadi ◽  
Hodjat Hajian ◽  
Murat Gokbayrak ◽  
Bayram Butun ◽  
Ekmel Ozbay

AbstractIn recent years, sub-wavelength metamaterials-based light perfect absorbers have been the subject of many studies. The most frequently utilized absorber configuration is based on nanostructured plasmonic metals. However, two main drawbacks were raised for this design architecture. One is the fabrication complexity and large scale incompatibility of these nano units. The other one is the inherent limitation of these common metals which mostly operate in the visible frequency range. Recently, strong interference effects in lithography-free planar multilayer designs have been proposed as a solution for tackling these drawbacks. In this paper, we reveal the extraordinary potential of bismuth (Bi) metal in achieving light perfect absorption in a planar design through a broad wavelength regime. For this aim, we adopted a modeling approach based on the transfer matrix method (TMM) to find the ideal conditions for light perfect absorption. According to the findings of our modeling and numerical simulations, it was demonstrated that the use of Bi in the metal-insulator-metal-insulator (MIMI) configuration can simultaneously provide two distinct functionalities; a narrow near unity reflection response and an ultra-broadband near perfect absorption. The reflection behavior can be employed to realize additive color filters in the visible range, while the ultra-broadband absorption response of the design can fully harvest solar irradiation in the visible and near infrared (NIR) ranges. The findings of this paper demonstrate the extraordinary potential of Bi metal for the design of deep sub-wavelength optical devices.


Nanophotonics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1547-1552
Author(s):  
George Duffett ◽  
Ralph Wirth ◽  
Mathieu Rayer ◽  
Emiliano R. Martins ◽  
Thomas F. Krauss

AbstractPhotonic and plasmonic refractive index sensors are able to detect increasingly smaller refractive index changes and concentrations of clinically relevant substances. They typically exploit optical resonances and aim to maximise the field overlap with the analyte in order to achieve high sensitivity. Correspondingly, they operate on the basis of maximizing the bulk sensitivity, which favours spatially extended modes. We note that this strategy, counter-intuitively, is not necessarily suitable for detecting biomolecules and one should focus on the surface sensitivity instead. Here, we show that by confining light tightly in metal-insulator-metal (MIM) nanoresonators, the surface sensitivity is significantly increased despite a clear decrease in bulk sensitivity. In particular, we experimentally show the operation of third order MIM resonators which support both extended surface plasmon polariton (SPP) modes and localized MIM modes. We are able to demonstrate that the MIM mode has a sensitivity of 55 nm/RIU to a 10 nm layer, which is approximately twice as high as that of the SPP mode. Overall, our work emphasizes the importance of the surface sensitivity over the more commonly used bulk sensitivity and it shows a novel approach for improving it. These insights are highly relevant for the design of next generation optical biosensors.


2020 ◽  
Vol 45 (24) ◽  
pp. 6719
Author(s):  
Zeinab Eftekhari ◽  
Amir Ghobadi ◽  
Ekmel Ozbay

Author(s):  
Kondaveeti Muralikrishna ◽  
ShafiShahsavar Mirza ◽  
Satbir Singh Dhula

For processing of desired information, the present-day electronic equipment is rapidly approaching their ultimate speed and bandwidth constraints, which is an ever more serious problem that prevents their persistent use in applications. It is believed that a promising solution is to fabricate electronic and photonic elements on a single chip. This mechanism provides a larger bandwidth that is used to construct new hybrid electronic photonic devices. In this paper the numerical analysis and design of metal-insulator-metal plasmonic directional coupler are presented. In dual optical bands, this directional coupler design needed the concept of the step impedance resonators (SIRs). Without reducing the subsystems, the enhanced architectures that pertain to filtering as well as multiplexing devices are necessary for conclusion of these kinds of specifications. Photonic-integrated circuits (PICs) have effectively improved their work by present design directional coupler, and it can be mixed with the conventional silicon PICs.


2011 ◽  
Author(s):  
Terrance O'Regan ◽  
Matthew Chin ◽  
Cheng Tan ◽  
Anthony Birdwell

2021 ◽  
Vol 11 (4) ◽  
pp. 1544
Author(s):  
Meguya Ryu ◽  
Yoshiaki Nishijima ◽  
Shinya Morimoto ◽  
Naoki To ◽  
Tomoki Hashizume ◽  
...  

The four polarisation method is adopted for measurement of molecular orientation in dielectric nanolayers of metal-insulator-metal (MIM) metamaterials composed of gold nanodisks on polyimide and gold films. Hyperspectral mapping at the chemical finger printing spectral range of 4–20 μμm was carried out for MIM patterns of 1–2.5 μμm period (sub-wavelength). Overlay images taken at 0,π4,π2,3π4 orientation angles and subsequent baseline compensation are shown to be critically important for the interpretation of chemical mapping results and reduction of spurious artefacts. Light field enhancement in the 60-nm-thick polyimide (I in MIM) was responsible for strong absorption at the characteristic polyimide bands. Strong absorbance A at narrow IR bands can be used as a thermal emitter (emittance E=1−R), where R is the reflectance and A=1−R−T, where for optically thick samples the transmittance is T=0.


Sign in / Sign up

Export Citation Format

Share Document