Vibration signal diagnosis and analysis of rotating machine by utilizing cloud computing

2021 ◽  
Vol 10 (1) ◽  
pp. 404-413
Author(s):  
Zhe Mi ◽  
Tiangang Wang ◽  
Zan Sun ◽  
Rajeev Kumar

Abstract Vibration signal diagnosis and analysis plays an important role in the industrial machinery since it enhances the machinery performance under supervision. The information regarding the future condition is given by vibration diagnosis techniques which is growing interest for the scientific and industrial communities. Information for failure diagnostic and prediction are provided by the motor vibration through signal processing. The development of mechanical systems fault prognosis and in the last decades, research is done at a very rapid rate. The examination of vibration signal monitoring is done in this paper with the aid of Cyber-Physical Systems (CPS) and Cloud Technology (CT). The machines maintenance strategies are implemented by using the data collected from machines which are based on the fault prognosis. The cloud computing platform is presented in this paper which is having three layers and the unlabelled data is received to generate an interpreted online decision. Feature extraction of the vibration signal is obtained in terms of range, mean value, root mean square value, and standard deviation and crest values. The performance of the model is evaluated by utilizing the classical statistical metrics such as RMSE Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) of the vibration signal. It is obtained that the proposed technique is 25% and 90% better than the Adaptive Neurofuzzy Inference System and the Single Modeling System respectively in terms of RMSE. The performance in terms of MAPE, then the proposed technique outperforms the existing Adaptive Neurofuzzy Inference System and the Single Modeling System by 8 % and 60% respectively. The presented technique is better than the existing Adaptive Neurofuzzy Inference System and the Single Modeling techniques by average of 15% and 30 % respectively.

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 442
Author(s):  
Meiqing Wang ◽  
Ali Youssef ◽  
Mona Larsen ◽  
Jean-Loup Rault ◽  
Daniel Berckmans ◽  
...  

Heart rate (HR) is a vital bio-signal that is relatively easy to monitor with contact sensors and is related to a living organism’s state of health, stress and well-being. The objective of this study was to develop an algorithm to extract HR (in beats per minute) of an anesthetized and a resting pig from raw video data as a first step towards continuous monitoring of health and welfare of pigs. Data were obtained from two experiments, wherein the pigs were video recorded whilst wearing an electrocardiography (ECG) monitoring system as gold standard (GS). In order to develop the algorithm, this study used a bandpass filter to remove noise. Then, a short-time Fourier transform (STFT) method was tested by evaluating different window sizes and window functions to accurately identify the HR. The resulting algorithm was first tested on videos of an anesthetized pig that maintained a relatively constant HR. The GS HR measurements for the anesthetized pig had a mean value of 71.76 bpm and standard deviation (SD) of 3.57 bpm. The developed algorithm had 2.33 bpm in mean absolute error (MAE), 3.09 bpm in root mean square error (RMSE) and 67% in HR estimation error below 3.5 bpm (PE3.5). The sensitivity of the algorithm was then tested on the video of a non-anaesthetized resting pig, as an animal in this state has more fluctuations in HR than an anaesthetized pig, while motion artefacts are still minimized due to resting. The GS HR measurements for the resting pig had a mean value of 161.43 bpm and SD of 10.11 bpm. The video-extracted HR showed a performance of 4.69 bpm in MAE, 6.43 bpm in RMSE and 57% in PE3.5. The results showed that HR monitoring using only the green channel of the video signal was better than using three color channels, which reduces computing complexity. By comparing different regions of interest (ROI), the region around the abdomen was found physiologically better than the face and front leg parts. In summary, the developed algorithm based on video data has potential to be used for contactless HR measurement and may be applied on resting pigs for real-time monitoring of their health and welfare status, which is of significant interest for veterinarians and farmers.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Lin Chen ◽  
Zhibin Liu ◽  
Nannan Ma ◽  
Yi Wang

A novel modified adaptive neurofuzzy inference system with smoothing treatment (MANFIS) is proposed. The MANFIS model considered the smoothing treatment of initial data basing on the adaptive neurofuzzy inference system, and we used it to predict oilfield-increased production under the well stimulation. Numerical experiments show the prediction result of the novel considering smoothing treatment is better than that without smoothing treatment. This study provides a novel and feasible method for prediction of oilfield-increased production under well stimulation, and it can be helpful in the further study of oilfield development measure planning.


Author(s):  
Mohammed Habib Al- Sharoot ◽  
Emaan Yousif Abdoon

The variations in exchange rate, especially the sudden unexpected increases and decreases, have significant impact on the national economy of any country. Iraq is no exception; therefore, the accurate forecasting of exchange rate of Iraqi dinar to US dollar plays an important role in the planning and decision-making processes as well as the maintenance of a stable economy in Iraq. This research aims to compare Box-Jenkins methodology to neural networks in terms of forecasting the exchange rate of Iraqi dinar to US dollar based on data provided by the Iraqi Central Bank for the period  30/01/2004 and 30/12/2014. Based on the Mean Square Error (MSE), the Mean Absolute Error (MAE), and the Mean Absolute Percentage Error (MAPE) as criteria to compare the two methodologies, it was concluded that Box-Jenkins is better than neural network approach in forecasting.


Author(s):  
Mohammed A. A. Al-qaness ◽  
Ahmed A. Ewees ◽  
Hong Fan ◽  
Laith Abualigah ◽  
Mohamed Abd Elaziz

The current pandemic of the new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or COVID-19, has received wide attention by scholars and researchers. The vast increase in infected people is a significant challenge for each country and the international community in general. The prediction and forecasting of the number of infected people (so-called confirmed cases) is a critical issue that helps in understanding the fast spread of COVID-19. Therefore, in this article, we present an improved version of the ANFIS (adaptive neuro-fuzzy inference system) model to forecast the number of infected people in four countries, Italy, Iran, Korea, and the USA. The improved version of ANFIS is based on a new nature-inspired optimizer, called the marine predators algorithm (MPA). The MPA is utilized to optimize the ANFIS parameters, enhancing its forecasting performance. Official datasets of the four countries are used to evaluate the proposed MPA-ANFIS. Moreover, we compare MPA-ANFIS to several previous methods to evaluate its forecasting performance. Overall, the outcomes show that MPA-ANFIS outperforms all compared methods in almost all performance measures, such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), and Coefficient of Determination( R 2 ). For instance, according to the results of the testing set, the R 2 of the proposed model is 96.48%, 98.59%, 98.74%, and 95.95% for Korea, Italy, Iran, and the USA, respectively. More so, the MAE is 60.31, 3951.94, 217.27, and 12,979, for Korea, Italy, Iran, and the USA, respectively.


Author(s):  
Mehdi Azarafza ◽  
Mohammad Azarafza ◽  
Jafar Tanha

Since December 2019 coronavirus disease (COVID-19) is outbreak from China and infected more than 4,666,000 people and caused thousands of deaths. Unfortunately, the infection numbers and deaths are still increasing rapidly which has put the world on the catastrophic abyss edge. Application of artificial intelligence and spatiotemporal distribution techniques can play a key role to infection forecasting in national and province levels in many countries. As methodology, the presented study employs long short-term memory-based deep for time series forecasting, the confirmed cases in both national and province levels, in Iran. The data were collected from February 19, to March 22, 2020 in provincial level and from February 19, to May 13, 2020 in national level by nationally recognised sources. For justification, we use the recurrent neural network, seasonal autoregressive integrated moving average, Holt winter's exponential smoothing, and moving averages approaches. Furthermore, the mean absolute error, mean squared error, and mean absolute percentage error metrics are used as evaluation factors with associate the trend analysis. The results of our experiments show that the LSTM model is performed better than the other methods on the collected COVID-19 dataset in Iran


2020 ◽  
Author(s):  
Sohail Saif ◽  
Priya Das ◽  
Suparna Biswas

Abstract In India, the first confirmed case of novel corona virus (COVID-19) was discovered on 30 January, 2020. The number of confirmed cases is increasing day by day and it crossed 21,53,010 on 09 August, 2020. In this paper a hybrid forecasting model has been proposed to determine the number of confirmed cases for upcoming 10 days based on the earlier confirmed cases found in India. The proposed modelis based on adaptive neuro-fuzzy inference system (ANFIS) and mutation based Bees Algorithm (mBA). ThemetaheuristicBees Algorithm (BA) has been modified applying 4 types of mutation and Mutation based Bees Algorithm (mBA) is applied to enhance the performance of ANFIS by optimizing its parameters. Proposed mBA-ANFIS model has been assessed using COVID-19 outbreak dataset for India and USAand the number of confirmed cases in next 10 days in Indiahas been forecasted. Proposed mBA-ANFIS model has been compared to standard ANFIS model as well as other hybrid models such as GA-ANFIS, DE-ANFIS, HS-ANFIS, TLBO-ANFIS, FF-ANFIS, PSO-ANFIS and BA-ANFIS. All these models have been implemented using Matlab 2015 with 10 iterations each. Experimental results showthat the proposed model has achieved better performance in terms of Root Mean squared error (RMSE), Mean Absolute Percentage Error (MAPE), Mean absolute error (MAE) and Normalized Root Mean Square Error (NRMSE).It has obtained RMSE of 1280.24, MAE of 685.68, MAPE of 6.24 and NRMSE of 0.000673 for India Data.Similarly, for USA the values are 4468.72, 3082.07, 6.1, 0.000952 for RMSE, MAE, MAPE, NRMSE respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shuanghua Liu ◽  
Qin Qi ◽  
Zhiming Hu

The nonhomogeneous grey model has been seen as an effective method for forecasting time series with approximate nonhomogeneous index law, which has been widely used in diverse disciplines on account of its high prediction precision. However, there remains room for improvements. For this, this study presents an improved nonhomogeneous grey model by incorporating the dynamic integral mean value theorem and fractional accumulation simultaneously. In order to promote the efficacy of the optimised model, we apply the whale optimization algorithm (WOA) to ascertain its optimal parameter. In particular, two examples are conducted to validate the superiority of the proposed model in contrast with other benchmarks, and the experimental results show that the mean absolute percentage error of the proposed approach is 808692% and 6.0706%, respectively, indicating the proposed approach performs better than other competing models.


2021 ◽  
Author(s):  
Rui Zhang ◽  
Qiulan Chen ◽  
Qiang Chen ◽  
Yujie Meng ◽  
Huan Zheng ◽  
...  

Abstract ObjectivesThis study intends to build and compare two kinds of forecasting models at different time scales for hemorrhagic fever incidence in China.MethodsARIMA and LSTM model were adopted to fit monthly, weekly and daily incidence of hemorrhagic fever in China from 2013 to 2018. The two models, combined and uncombined with rolling forecast, were used to predict the incidence in 2019 to identify its stability and availability. ResultsARIMA (2, 1, 1) (0, 1, 1)12, ARIMA (1, 1, 3) (1, 1, 1)52 and ARIMA (5, 0, 1) was selected as the best fitted ARIMA model for monthly, weekly and daily incidence series respectively. The model with 64 neurons and SGDM for monthly incidence, 8 neurons and Adam for weekly incidence, and 64 neurons and RMSprop for daily incidence were selected as the best fitted LSTM models. The values of root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) of the models combined with rolling forecast in 2019 were lower than those of the direct forecast models for both ARIMA and LSTM. It was shown from the forecasting performance in 2019 that ARIMA was better than LSTM for monthly and weekly forecasting while the LSTM was better than ARIMA for daily forecasting in rolling models.ConclusionsBoth ARIMA and LSTM could be used to build a prediction model for the incidence of hemorrhagic fever meanwhile different models might be more suitable for the incidence prediction at different time scales.


Econometrics ◽  
2020 ◽  
Vol 24 (3) ◽  
pp. 37-50
Author(s):  
Filip Wójcik ◽  
Michał Górnik

This paper presents a proposition to utilize flexible neural network architecture called Deep Hybrid Collaborative Filtering with Content (DHCF) as a product recommendation engine. Its main goal is to provide better shopping suggestions for customers on the e-commerce platform. The system was tested on 2018 Amazon Reviews Dataset, using repeated cross validation and compared with other approaches: collaborative filtering (CF) and deep collaborative filtering (DCF) in terms of mean squared error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE). DCF and DHCF were proved to be significantly better than the CF. DHCF proved to be better than DCF in terms of MAE and MAPE, it also scored the best on separate test data. The significance of the differences was checked by means of a Friedman test, followed by post-hoc comparisons to control p-value. The experiment shows that DHCF can outperform other approaches considered in the study, with more robust scores


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Aravind Natarajan ◽  
Hao-Wei Su ◽  
Conor Heneghan ◽  
Leanna Blunt ◽  
Corey O’Connor ◽  
...  

AbstractWe show that heart rate enabled wearable devices can be used to measure respiratory rate. Respiration modulates the heart rate creating excess power in the heart rate variability at a frequency equal to the respiratory rate, a phenomenon known as respiratory sinus arrhythmia. We isolate this component from the power spectral density of the heart beat interval time series, and show that the respiratory rate thus estimated is in good agreement with a validation dataset acquired from sleep studies (root mean squared error = 0.648 min−1, mean absolute error = 0.46 min−1, mean absolute percentage error = 3%). We use this respiratory rate algorithm to illuminate two potential applications (a) understanding the distribution of nocturnal respiratory rate as a function of age and sex, and (b) examining changes in longitudinal nocturnal respiratory rate due to a respiratory infection such as COVID-19. 90% of respiratory rate values for healthy adults fall within the range 11.8−19.2 min−1 with a mean value of 15.4 min−1. Respiratory rate is shown to increase with nocturnal heart rate. It also varies with BMI, reaching a minimum at 25 kg/m2, and increasing for lower and higher BMI. The respiratory rate decreases slightly with age and is higher in females compared to males for age <50 years, with no difference between females and males thereafter. The 90% range for the coefficient of variation in a 14 day period for females (males) varies from 2.3–9.2% (2.3−9.5%) for ages 20−24 yr, to 2.5−16.8% (2.7−21.7%) for ages 65−69 yr. We show that respiratory rate is often elevated in subjects diagnosed with COVID-19. In a 7 day window from D−1 to D+5 (where D0 is the date when symptoms first present, for symptomatic individuals, and the test date for asymptomatic cases), we find that 36.4% (23.7%) of symptomatic (asymptomatic) individuals had at least one measurement of respiratory rate 3 min−1 higher than the regular rate.


Sign in / Sign up

Export Citation Format

Share Document