scholarly journals Review of international normatives for natural radioactivity determination in building materials

Nukleonika ◽  
2015 ◽  
Vol 60 (3) ◽  
pp. 597-602 ◽  
Author(s):  
Eros Mossini ◽  
Elena Macerata ◽  
Marco Giola ◽  
Mario Mariani

Abstract Anthropogenic activities, such as high-altitude flights and living in buildings, have enhanced the public exposure to natural radiation. In particular, 40K and radionuclides belonging to 232Th and 238U decay chains are present even in building materials, and they may be considered as partially responsible for the effective dose coming from natural radioactivity. Scientists and governments have devoted great attention to the evaluation of the effects produced on the public by naturally occurring radionuclides. In this context, to evaluate the building materials acceptability, accurate and reliable methods for the measurement of the specific activity of natural radioactive isotopes in building materials have been developed. This paper aims to provide a clear and exhaustive review on natural radionuclide measurement procedures. Several standard national normatives (Dutch NEN 5697, Italian UNI 10797, Polish ITB 455), based on gamma spectrometry, have been considered and some critical issues were identified regarding the preparation and the radiometric measuring of the samples. Therefore, the direct measurement of 238U and 232Th by ICP-MS spectrometry as well as the extrapolation of the specific activities without waiting for secular equilibrium have been considered as two promising alternative approaches.

2021 ◽  
Vol 10 (2) ◽  
pp. 40-44
Author(s):  
Elena Viktorovna Zakharova ◽  
Elena Viktorovna Gaevaya ◽  
Leonid Nikolaevich Skipin ◽  
Svetlana Sergeevna Tarasova ◽  
Vasilyа Zinnurovna Burlaenko

The current pace of construction leads to the use of large volumes of construction raw materials, which must meet the regulatory indicators, including radiation. High levels of natural radionuclide activity, both in construction and finishing materials, affect changes in the gamma radiation indicators in the premises, which can negatively affect the health of people living in such facilities. Ecological and radiation assessment of building materials for the content of natural radionuclides showed an increased natural activity of potassium-40. The maximum activity values were observed in samples of bricks and expanded clay, where they were 799,0 and 622,0 Bq/kg, respectively. The lowest specific activity of natural potassium was observed in the crushed stone sample (21,3 Bq/kg). The specific activity of thorium-232 in building materials ranged from 2,1 to 53,3 Bq/kg. The activity of radium-226 in all the studied samples ranged from 4,4 Bq/kg (crushed stone) to 55,6 Bq/kg (cement). The specific effective activity of natural radionuclides in the studied building materials does not exceed the standard values (370 Bq/kg), therefore, they can be used in all types of construction and reconstruction.


2018 ◽  
Vol 57 ◽  
pp. 02003
Author(s):  
Aneta Łukaszek-Chmielewska ◽  
Martin Girard ◽  
Karol Wojtkowski ◽  
Krzysztof Isajenko ◽  
Barbara Piotrowska

This article presents the results of natural radioactivity research for selected building materials such as: ceramic blocks, cellular concrete, solid bricks, ceramic roof tiles, cement, mortars, plaster and adhesives available on the domestic market. In Poland, the possibility of using various raw materials and ready-made construction materials depends on the values of activity coefficients f1 and f2. The activity coefficient f1 determines the content of natural isotopes in the examined material, as an indicator of the whole body exposure to gamma radiation. The activity coefficient f2 determines the content of radium 226Ra in the examined material, as an indicator of the epithelial lung exposure to the alpha radiation emitted through radon decay products, taken together with the air by the human respiratory system. Activity coefficients are described by natural potassium 40K, radium 226Ra and 228Th. The activity concentrations of these radionuclide were determined using MAZAR analyzer with a scintillation detector. The highest concentrations of natural radioactive isotopes were recorded for solid bricks, while plaster has the lowest concentration. Nevertheless, none of the tested samples had activity of both coefficients exceeding the limit values, which means each of the analyzed materials can be safely used in buildings intended for human stays or livestock. Additionally, the work has determined the dose rate and effective annual dose equivalent for the analyzed building materials.


2020 ◽  
Vol 2 (1) ◽  
pp. 14-22
Author(s):  
Julius Olatunji Jeje ◽  
Muritala Oluwaseun Arowolo ◽  
Adeniyi Ayokunle Sodipo

This research investigated the use of radioactive isotopes to study the underground water characteristics of Ife South and Ife North Local governments area of Osun state in Southwestern Nigeria. The study aimed to determine the origin of water, the flow paths, residence time, and prediction of the geological formation of the study area. Twelve water samples were collected from the two local governments using standard methods for isotope study. Uranium 234U and 238U were analyzed for water samples using a gamma-ray spectrometer with Caesium Iodide (CsI) scintillation detector and physical analyses such as pH, electrical conductivity, total dissolved solids, and temperature were also determined. The specific activity of 238U ranged between 27.44±0.55 to 36.89±1.70 Bq/kg; activity ratio of water samples from the two LGA ranged from 0.83 to 1.07 with average activity ratio of 0.901. All the sample locations have an activity ratio of less than 1.00 except two locations in Ife South LGA (Ooni 1 and 2); a 234U value of 30.386747 Bq/kg was taken as constant. Ife North and Ife South have an average EC, turbidity, TDS, residence time of 493.3 (µs/cm), and 686.6 (µs/cm); 1.2 NTU and 3.33 NTU; 108.67 mg/l and 523.33 mg/l; 2.889 ma and 2.784 ma respectively. In conclusion, the groundwater of the two LGA originate from the same source and are in the oxidation state; aquifers within Ife North and Ife South are separated with a barrier; hence its groundwater does not flow through one another. The residence time of groundwater in the two LGA is over 2.8 ma; Ooni 1 and 2 area is underlain by rocks rich in Uranium (granite), rocks underlying Ife South is younger to Ife North, Ife North is underlying by old weathered rocks (sedimentary rocks).


2019 ◽  
Vol 15 (5) ◽  
pp. 493-499 ◽  
Author(s):  
Francesco Caridi ◽  
Santina Marguccio ◽  
Alberto Belvedere ◽  
Maurizio D`Agostino ◽  
Giovanna Belmusto

Background: In this article a comprehensive study was carried out for the determination of natural radioactivity in animal and vegetable food (meat, fish, milk and derivates, legumes, cereals and derivates, fruit, hortalizas, vegetables, vegetable oils) typical of different feeding regimes, for the age category higher than 17 years. Methods: A total of eighty-five samples of Italian origin, coming from large retailers during the years 2014, 2015 and 2016, were analyzed through HPGe gamma spectrometry. Results: The specific activity of 40K was investigated and its mean value was found to be: (106.3 ± 6.9) Bq/kg for bovine, swine and sheep meat; (116.5 ± 9.7) Bq/kg for fish; (52.9 ± 3.1) Bq/kg for milk and derivates; (271.9 ± 16.7) Bq/kg for legumes; (67.2 ± 4.7) Bq/kg for cereals and derivates; (52.7 ± 4.4) Bq/kg for fruit; (72.9 ± 5.6) Bq/kg for hortalizas; (83.9 ± 6.5) Bq/kg for vegetables; lower than the minimum detectable activity for vegetable oils. For animal food the highest mean 40K activity concentration was found in fish samples; for vegetable food the highest one was detected in legumes. Conclusion: The evaluation of dose levels due to the food ingestion typical of Mediterranean, Vegetarian and Vegan diets was performed. The annual effective dose was found to be 0.16 mSv/y, 0.41 mSv/y and 0.54 mSv/y, respectively.


2021 ◽  
Vol 13 (13) ◽  
pp. 7513
Author(s):  
Joshua Lozano ◽  
Joonghyeok Heo ◽  
Mijin Seo

The purpose of this study was to evaluate the public water contamination levels of Winkler County, in West Texas. With water scarcity becoming more prevalent in arid climates like West Texas, it is important to ensure the water quality in these areas. The Dockum and Pecos Valley aquifers were analyzed for inorganic pollutants that could inhibit the water. The parameters such as copper, lead, arsenic, nitrate, chloride, and chromium level reports were provided from 1972 to 2018 to analyze and compare to other studies such as the ones conducted in the Midland/Odessa area. The results were compared to the Environmental Protection Agency (EPA) safety standards, and conclusions were made for the safety consumption of water within the county. We found that inorganic pollutants resulted mainly from the mobilization of the contaminant from anthropogenic activities such as chemical fertilizers, oil and gas developments. This research provides important information for inorganic pollutants in the sinkhole region of Winkler County and contributes to understanding the response to the aquifers. The significance of water quality in West Texas is now more important than ever to ensure that everyone has clean drinking water.


ANRI ◽  
2021 ◽  
Vol 0 (1) ◽  
pp. 31-44
Author(s):  
Aleksey Vasil'ev ◽  
Aleksey Ekidin ◽  
Mariya Pyshkina ◽  
Georgiy Malinovskiy ◽  
Aleksandra Onischenko ◽  
...  

A method for non-destructive monitoring of the content of natural radionuclides in building materials has been developed. Spectrum measurements of gamma radiation are carried out with a pre-calibrated field gamma spectrometer. The calculation of the average specific activity of natural radionuclides in building materials is carried out by comparing the calculated flux density of unscattered gamma quanta normalized to the specific activity, and the experimentally measured count rates in the photopeak. calculated for the geometry of the room under study and the location of the detector. Application of the developed method makes it possible to estimate the average activity of natural radionuclides in building materials without destruction.


2022 ◽  
Author(s):  
Rinat Lukmanov ◽  
Said Jabri ◽  
Ehab Ibrahim

Abstract The tight gas reservoirs of Haima Supergroup provide the majority of gas production in the Sultanate of Oman. The paper discusses a possibility of using the anomalies from natural radioactivity to evaluate the fracture height for complex tight gas in mature fields of Oman. The standard industry practice is adding radioactive isotopes to the proppant. Spectral Gamma Ray log is used to determine near wellbore traced proppant placement. Spectral Noise log in combination with Production logs helps to identify the active fractures contributing to production. These methods complement each other, but they are obviously associated with costs. Hence, majority of wells are fracced without tracers or any other fracture height diagnostics. However, in several brown fields, an alternative approach to identify fracture height has been developed which provides fit-for-purpose results. It is based on the analysis of naturally occurring radioactive minerals (NORM) precipitation. The anomalies were observed in the many gas reservoirs even in cases when tracers were not used. At certain conditions, these anomalies can be used to characterize fracture propagation and optimize future wells hydraulic Fracture design. A high number of PLTs and well test information were analyzed. Since tight formations normally don't produce without fracturing, radioactive anomalies flag the contributing intervals and hence fracture propagation. The main element of analysis procedure is related to that fact that if no tracers applied, the discrepancy between normalized Open Hole Gamma Ray and Gamma Ray taken during PLT after 6-12 months of production can be used instead to establish fracture height. This method cannot be applied for immediate interpretation of fracture propagation because time is required to precipitate NORM and using the anomalies concept. The advantage of this method is that it can be used in some fields to estimate the frac effectiveness of wells without artificial tracers. It is normally assumed that the Natural radioactivity anomalies appear mainly due to co-production of the formation water. However, in the fields of interest the anomalies appear in wells producing only gas and condensate. This observation provides an opportunity for active fracture height determination at minimum cost.


2018 ◽  
Vol 53 (4) ◽  
pp. 265-278 ◽  
Author(s):  
S. Penabei ◽  
D. Bongue ◽  
P. Maleka ◽  
T. Dlamini ◽  
Saïdou ◽  
...  

In order to assess the levels of natural radioactivity and the associated radiological hazards in some building materials of the Mayo-Kebbi region (Chad), a total of nineteen samples were collected on the field. Using a high resolution γ-ray spectrometry system, the activity concentrations of radium (226Ra), thorium (232Th) and potassium (40K) in these samples have been determined. The measured average activity concentrations range from 0.56 ± 0.37 Bq kg−1 to 435 ± 7 Bq kg−1, 1.3 ± 0.6 Bq kg−1 to 50.6 ± 1.1 Bq kg−1 and 4.3 ± 2.0 Bq kg−1 to 840 ± 9 Bq kg−1, for 226Ra, 232Th and 40K, respectively. The highest 226Ra average activities is found in soil brick samples of Zabili. The highest mean value of 232Th and 40K concentrations are found in soil brick samples of Madajang. The activity concentration and the radium equivalent activity (Raeq) have been compared to other studies done elsewhere in the world. Their average values are lower than most of those of countries with which the comparison has been made. Were also evaluated, the external radiation hazard index, the internal radiation hazard index, the indoor air absorbed dose rate, the outdoor air absorbed dose rate, the activity utilization index, the annual effective dose, the annual gonadal dose equivalent, the representative level index, as well as, the excess lifetime cancer risk. In accordance with the criterion of the Organization for Economic Cooperation and Development, our results show that soil brick samples of Zabili and Madajang increases the risk of radiation exposure, thereby the possibility of developing cancer by people living in this environment. Based on these findings, brick samples from Zabili and Madajang are not recommended for construction purposes. All other sample materials have properties that are acceptable for use as building materials in terms of radiation hazard.


Sign in / Sign up

Export Citation Format

Share Document