scholarly journals Response of biomass, grain production, and sugar content of four sorghum plant varieties (Sorghum bicolor (L.) Moench) to different plant densities

2021 ◽  
Vol 6 (1) ◽  
pp. 761-770
Author(s):  
Reni Lestari ◽  
Kartika Ning Tyas ◽  
Arief N. Rachmadiyanto ◽  
Mahat Magandhi ◽  
Enggal Primananda ◽  
...  

Abstract Sorghum (Sorghum bicolor (L.) Moench) is a potential plant for food, livestock feed, biofuel, sugar, alcohol, and other bioindustry products. Sorghum could be adaptable to grow and expand in marginal areas of the world. Varieties of sorghum have their specific morpho-agronomic characters. It would be significant to compare the performance of multiple sorghum varieties to identify a suitable one for the intended use. The increase in biomass plant production could be caused by cultivation factors, such as an increased planting density. This study aims to determine the response of four different sorghum varieties to the treatment of the plant density on the biomass, grain production, and sugar content of stem juice. This research was conducted using two factors: sorghum variety (“Super 1,” “Keler,” “Lepeng,” and “Rio”) and the plant density (two, four, and six plants per hole or 106,667; 213,333; and 320,000 plants ha−1, respectively). The results of the study showed that all four sorghum varieties tested could be used as biomass resources. The highest plant dry biomass was gained from six plants per hole with 44.0 t ha–1, whereas the lowest one was two plants per hole with 30.4 t ha–1. “Super 1” was a superior variety due to the significant highest sugar content of the stem juice (13.9°Brix) and grain production. “Lepeng” variety was the lowest in both sugar content (8°Brix) and grain production, whereas “Keler” and “Rio” varieties contained sugar in between 8.5 and 10.8°Brix of the stem juice.

1978 ◽  
Vol 26 (4) ◽  
pp. 383-398 ◽  
Author(s):  
A. Darwinkel

The effect of plant density on the growth and productivity of the various ear-bearing stems of winter wheat was studied in detail to obtain information on the pattern of grain production of crops grown under field conditions. Strong compensation effects were measured: a 160-fold increase in plant density (5-800 plants/m2) finally resulted in a 3-fold increase in grain yield (282 to 850 g DM/m2). Max. grain yield was achieved at 100 plants/m2, which corresponded to 430 ears/m2 and to about 19 000 grains/m2. At higher plant densities more ears and more grains were produced, but grain yield remained constant. Tillering/plant was largely favoured by low plant densities because these allowed tiller formation to continue for a longer period and a greater proportion of tillers produced ears. However, at higher plant densities more tillers/unit area were formed and, despite a higher mortality, more ears were produced. The productivity of individual ears, from main stems as well as from tillers, decreased with increasing plant density and with later emergence of shoots. In the range from 5 to 800 plants/m2 grain yield/ear decreased from 2.40 to 1.14 g DM. At 800 plants/m2 nearly all ears originated from main stems, but with decreasing plant density tillers contributed increasingly to the number of ears. At 5 plants/m2, there were 23 ears/plant and grain yield/ear ranged from 4.20 (main stem) to 1.86 g DM (late-formed stems). Grain number/ear was reduced at higher densities and on younger stems, because there were fewer fertile spikelets and fewer grains in these spikelets. At the low density of 5 plants/m2, plants developed solitarily and grain yield/ear was determined by the number of grains/ear as well as by grain wt. Above 400 ears/m2, in this experiment reached at 100 plants/m2 and more, grain yield/ear depended solely on grain number, because the wt. of grains of the various stems were similar. The harvest index showed a max. of about 44% at a moderate plant density; at this density nearly max. grain yield was achieved. At low plant densities the harvest index decreased from 45% in main stems to about 36% in late-formed stems. However, no differences in harvest index existed between the various ear-bearing stems if the number of ears exceeded 400/m2. (Abstract retrieved from CAB Abstracts by CABI’s permission)


HortScience ◽  
2021 ◽  
Vol 56 (2) ◽  
pp. 286-290
Author(s):  
Ravneet K. Sandhu ◽  
Nathan S. Boyd ◽  
Lincoln Zotarelli ◽  
Shinsuke Agehara ◽  
Natalia Peres

Florida vegetable growers are facing high production costs due to high input costs, lower profitability, and competition from foreign markets. Multi/intercropping allows growers to increase the yields and profits per unit area by producing multiple crops on the same beds. Experiments determining the effects of intercropping and plant spacing was conducted in Fall 2018 and 2019 at Gulf Coast Research and Education Center, Balm. Tomato and bell pepper were intercropped at low and high planting density on plastic-covered beds. Bell pepper shoot biomass was significantly (P < 0.001) reduced when intercropped with tomato, compared with monocropped bell pepper. However, tomato shoot biomass was significantly reduced when tomato plant density increased, but it was unaffected by bell pepper intercropping. Biomass of both crops was unaffected by relay cropping. Bell pepper yields when intercropped with tomato at low density (60 cm tomato-tomato and 38 cm pepper-pepper) had similar yields to bell pepper planted alone in low and high planting density. We concluded that bell pepper plants were more sensitive to interspecific competition, whereas tomato plants were more sensitive to intraspecific competition. Intercropping may be a viable option for growers at recommended plant densities used for monocrops. However, high plant density is not recommended.


Agronomy ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 243 ◽  
Author(s):  
Jairo Cazetta ◽  
Marcos Revoredo

Increasing plant density seems to improve the productivity of maize crops, and the understanding of how the metabolism of non-structural carbohydrates is affected in plants under high crop density is critical. Thus, with the objective of further clarifying this issue, maize plants were subjected to densities from 30,000 to 90,000 plants ha−1, and the plant growth, soluble sugars and starch contents, invertase and sucrose synthase activities, and plant production were evaluated. We found that the stalk is more sensitive to the increasing plant density than leaves and kernels. The dry weight of the stalk and leaves per single plant decreased more drastically from low to intermediate plant densities, while grain production was reduced linearly in all plant density ranges, leading to higher values of harvest index in intermediate plant densities. The sucrose concentration did not change in leaves, stalk, or kernels of plants subjected to increasing plant densities at the R4 stage. Also, the specific activity of soluble invertase, bound invertase, and sucrose synthase did not change in leaf, stalk, or kernels of plants subjected to increased plant density. The productivity was increased with the increase in plant density, using narrow row (0.45 m) spacing.


2019 ◽  
Vol 41 (2) ◽  
Author(s):  
André Luiz Kulkamp de Souza ◽  
Edson Luiz de Souza ◽  
Samila Silva Camargo ◽  
Nelson Pires Feldberg ◽  
Mateus da Silveira Pasa ◽  
...  

Abstract The densification of orchards has become a viable alternative for producers seeking a greater use of current area, as well as greater profitability. In this sense, the spacing and training system to be used in the peach tree planting are extremely important to facilitate orchard management and, above all, to maximize tree yield. Based on this, the present research aimed to evaluate the possibility of orchard densification and the use of different numbers of main scaffolds to recommend the best way of training and spacing the ‘BRS Rubimel’ peach cultivar. The planting was carried out in 2010, in the city of Fraiburgo - SC, and eight treatments with different spacings between the plants in the rows and number of scaffolds were evaluated during four harvests (2013, 2014, 2015 and 2016): T1- 2 scaffolds and 0.75 m; T2- 2 scaffolds and 1.00 m; T3- 2 scaffolds and 1.25 m; T4- 2 scaffolds and 1.50 m; T5- 4 scaffolds and 1.00 m; T6- 4 scaffolds and 1.50 m; T7- 4 scaffolds and 1.75 m; T8- 4 scaffolds and 2.00 m, totaling a plant density of 2667, 2000, 1600, 1333, 2000, 1333, 1143 and 1000 per hectare, respectively. The analyzed variables were the number of fruits per plant, production per plant (kg); productivity (t ha-1); fresh fruit mass (g), total soluble solids content (ºBrix), total acidity (meq L-1), epidermal coloring and pulp firmness (pounds). The highest yields were found in the treatment with two scaffolds and 0.75m between plants, as well as that with 4 scaffolds in 1.0 m spacing in the 2014 and 2015 crops and two scaffolds in 1.0m in the 2015 harvest. The fresh mass, soluble solids, total acidity and fruit firmness were not influenced by the different treatments. It was concluded that the densification of orchards is feasible for peach trees of the ‘BRS Rubimel’ cultivar due to the increase in productivity, without decreasing the quality of the fruits, indicating a spacing of 0.75 cm between plants and two scaffolds in the “Y-shape” as ideal. Another option with good results is the use of the four-scaffold “Y-shaped” training system, indicated for the ‘BRS Rubimel’ peach trees, due to the maintenance of high yields and reduction in the number of plants per hectare when compared to treatments with two scaffolds.


2016 ◽  
pp. 67-72
Author(s):  
Eszter Murányi

Maize yield amount development is determined by the given crop year and the genotype of the applied hybrid, but beside these also by the applied agrotechnical factors, in particular by sowing technology. The development of yield amount and yield producing factors of five maize hybrids of different genotypes has been studied in a small-plot field experiment by the application of different row spacings and plant density variants. The production of the individual plants shows decreasing tendency parallel to the increasing plant density, however, this decrement is compensated by the higher number of plants per unit production area. Individual plant production is determined by the development of yield producing factors, such as the length and the diameter of cobs, just as by the thousand seed weight – that were studied in the present research work as well. In the present research work the decreasing row spacing resulted in a yield increment of 0.67 t ha-1 (4.53%) in 2013, while in contrast in 2014 yield was decreased by 1.75 t ha-1 (14.87%). The high amount of precipitation in March was determinant in 2013: it filled up the soil water stock and balanced the negative effect of the inadequate amount and distribution of precipitation during the vegetation period for the yield. Lower extent of yield increment (0.6 t ha-1) was registered in 2014 in case of the row spacing of 76 cm than in the previous year. In case of a row spacing of 45 cm the difference between the two crop years was 3.1 t ha-1. The highest impact on the yield production factors was found in all treatment combinations in case of the applied hybrid among the three studied treatment factors. In the crop year of 2014 the effect of plant density on cob diameter and thousand seed weight could be revealed as well. In case of the cob diameter significant difference was found between the plant densities of 70 000 and 90 000 plants ha-1, just as between the populations with densities of 50 000 and 90 000 plants ha-1. In case of the thousand seed weight significant differences could be found by the application of plant densities of 70 000 and 90 000 plants ha-1. The highest values of the studied yield producing factors were measured in case of the plant densities of 50 000 and 70 000 plants ha-1; increasing the plant density to 90 000 plants ha-1 resulted in rather decreasing values.


1980 ◽  
Vol 28 (3) ◽  
pp. 156-163 ◽  
Author(s):  
A. Darwinkel

The pattern of grain production of a winter wheat crop and the effect of plant density and time of tiller emergence on grain yield/ear were studied. At harvest, ear size and ear components were ascertained and were discussed in relation to ear growth and ear development during the prefloral and postfloral growing period. Detailed information was obtained on the productivity of ear-bearing tillers and their contribution to final grain yield. Shoot productivity decreased in denser crops; ears were smaller because spikelet differentiation, grain set and grain filling were inadequate. The date that the tiller emerged largely determined its subsequent grain yield. With later tiller initiation and emergence fewer ears were produced. Moreover, these ears were smaller because spikelet initiation, spikelet differentiation, grain set and grain filling were reduced. At low and moderate plant densities, the grain yield of the early-emerged tillers only slightly lagged behind that of main shoots and max. grain yield could be achieved at moderate plant densities. It was concluded that in cereal farming, high and stable grain yields are aims to be achieved. These can be best achieved by having moderate plant densities and applying correct treatments for good crop growth. (Abstract retrieved from CAB Abstracts by CABI’s permission)


HortScience ◽  
1998 ◽  
Vol 33 (5) ◽  
pp. 816-818 ◽  
Author(s):  
Haim Nerson

Two field experiments were conducted in Bet Hashita (1992) and Newe Ya'ar (1993), Israel, in order to examine the possibility of using plant growth habit, chlorflurenol, and plant population density to concentrate yield of pickling cucumber (Cucumis sativus L.) under a simulated once-over mechanical harvest system. Two near-isogenic cucumber lines, WI 1983G normal and WI 1983G little leaf, were grown under three plant densities, 5, 10, and 20 plants/m2, and at flowering half of the plants were treated with 50 mg·L-1 chlorflurenol solution. The little leaf line produced a smaller canopy than the normal line under five plants/m2 but a larger canopy under 20 plants/m2. The average commercial yield of the little leaf line was higher than that of the normal leaf line by 28% and 55% in Bet Hashita and in Newe Ya'ar, respectively. The highest yield of each line was achieved under the highest plant density. The average commercial yields under 20 plants/m2 were 1.13 and 0.91 kg·m-2 in Bet Hashita and 1.86 and 0.92 kg·m-2 in Newe Ya'ar for little leaf and normal leaf, respectively. Chlorflurenol increased fruit number per unit area but did not increase yield. Nevertheless, it increased the proportion of small fruits, which are more valuable. The present study shows that the little leaf growth habit can increase the yield concentration in pickling cucumber and make this crop more suitable for a once-over mechanical harvest. Chemical name used: methyl-2-chloro-9-hydroxyfluorene-9-carboxylate (chlorflurenol).


HortScience ◽  
1998 ◽  
Vol 33 (4) ◽  
pp. 652-654
Author(s):  
D.C. Sanders ◽  
J.D. Cure ◽  
W.J. Sperry ◽  
J.C. Gilsanz ◽  
C.A. Prince ◽  
...  

Three studies were conducted at Clinton, N.C., to investigate the relationship between number of rows per bed, in-row spacing, and spear yield of asparagus (Asparagus officinalis L.) over 11 to 13 years. In the first study, increasing plant densities from 21,550 to 43,100 plants/ha by doubling the number of rows/bed increased the cumulative yield from 64% to 80% for three hybrid lines (`UC 157', `WSU 1', and `WSU 2') but only 6% for `Rutgers Beacon'. The effects of doubling the plant density were still apparent 13 years later. In the second study, yields of `Princeville' (`Mary Washington' selection) crowns, grown at densities from 14,000 to 86,000 plants/ha, were also increased for 8 years by doubling rows at various in-row spacings. In a third study, in which densities ranged from 21,000 to 387,900 plants/ha, the magnitude of the response to rows/bed was dependent on in-row spacing. Efficient use of bed space and the avoidance of crowding exerted a larger influence on productivity than did average planting density. The yield response to rows/bed was greater and more persistent through the years for wider in-row spacings. Spear size was only marginally responsive to rows per bed and in-row spacing.


1998 ◽  
Vol 78 (2) ◽  
pp. 333-340 ◽  
Author(s):  
Jonathan R. Schultheis ◽  
Todd C. Wehner ◽  
S. Alan Walters

Optimum planting density and harvest stage were determined for once-over harvest of little-leaf and normal-leaf cucumbers. Three harvest stages (10, 25, and 50% oversize fruit) and four plant densities (37,000, 75,000, 150,000, and 300,000 plants/ha) were evaluated on little-leaf cucumber (H-19) and normal-leaf cucumber (Sumter and Regal). Plant density did not affect skin color, seedcell size, and seed size in the cultivars evaluated. However, lighter skin color, larger seedcell, and larger seed size were detected at the later harvest stages in H-19. Harvest stage did not influence fruit skin color in Regal and Sumter, but seedcell size and seed size increased quadratically with harvest stage. H-19 produced the highest yield (tonne/ha) and dollar value ($/ha) followed by Regal and Sumter. Considering fruit quality and dollar value, the 10% harvest stage at 330 000 plants ha−1 was the optimum stage and density for once-over harvest of H-19 under North Carolina growing conditions. Higher yield occurred at the later harvest stages, but poorer fruit quality (increased seed and seedcell size, and a lighter skin color) was associated with those stages. Fruit quality and dollar value of Regal was best at the 10% harvest stage at approximately 240 000 plants ha−1, while 200 000 plants ha−1 was best for Sumter. Key words: Cucumis sativus, cucumber, plant type, spacing, crop ideotype, vegetable production


1979 ◽  
Vol 59 (3) ◽  
pp. 577-584 ◽  
Author(s):  
G. O. EDMEADES ◽  
N. A. FAIREY ◽  
T. B. DAYNARD

The distribution pattern of 14C-labelled assimilate in the flowering shoot of maize (Zea mays L.) grown in the field at three plant densities (50 000, 100 000 and 150 000 plants/ha) was determined by labelling with 14CO2 at 1 day after anthesis. Shoots were harvested 4 days later. Four leaf positions were fed 14CO2 at each density; relative to the ear leaf (EL), these were EL+4 (i.e. fourth leaf above ear leaf), EL+2, EL, and EL-2. At the lowest plant density EL-4 was also labelled. The dominant factor influencing assimilate distribution was the position of the assimilating leaf rather than plant density. Assimilate from upper leaves supplied the tassel, upper stem, and ear preferentially. Assimilate from lower leaves supplied the lower stem and ear. Among leaf positions the ear leaf supplied the greatest percentage of its assimilate (26% at 50 000 plants/ha and 19% at 150 000 plants/ha) to the developing cob (rachis plus grain initials). As density increased so did the proportion of labelled assimilate remaining in labelled leaves. Coefficients of variation, computed among individual plants, indicated that assimilate distribution to reproductive organs was more variable than that to vegetative organs and that this variability increased with planting density.


Sign in / Sign up

Export Citation Format

Share Document