scholarly journals Investigation on the effect of electrode tip on formation of metal droplets and temperature profile in a vibrating electrode electroslag remelting process

Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 743-751 ◽  
Author(s):  
Fang Wang ◽  
Jakov Baleta ◽  
Qiang Wang ◽  
Baokuan Li

Abstract In the present work, a transient full-coupled modelling approach has been put forward to study the effect of electrode tip on formation of metal droplets and temperature profile in the electromagnetically-controlled electroslag-remelting furnace with vibrating electrode. The electromagnetic field, momentum and energy conservation equations are solved simultaneously based on the finite volume method. The interface of slag and metal is traced using the volume of fluid approach. The results show that in the case of cone tip electrode the average dimension of metal droplets is smaller compared to the flat tip electrode. In addition, the bigger and stretched metal droplets are not observed with the cone tip electrode. The temperature fields with the cone tip electrode are distributed in a prominent periodic pattern compared to the case with flat tip electrode. The maximum temperature zone with the cone tip electrode is located along the z axial in the upper part of slag, not in the lower part. When the frequency changes from 0.17 Hz to 1 Hz, the maximum temperature reduces from 2050 K to 1985 K and the peak value of velocity decreases from 0.20 m/s to 0.125 m/s. When the vibration amplitude varies from 3mm to 6mm, the maximum temperature in the slag cover drops by 3.9% and the peak value of velocity rises by 16.7%.

2016 ◽  
Vol 831 ◽  
pp. 83-91
Author(s):  
Lahoucine Belarche ◽  
Btissam Abourida

The three-dimensional numerical study of natural convection in a cubical enclosure, discretely heated, was carried out in this study. Two heating square sections, similar to the integrated electronic components, are placed on the vertical wall of the enclosure. The imposed heating fluxes vary sinusoidally with time, in phase and in opposition of phase. The temperature of the opposite vertical wall is maintained at a cold uniform temperature and the other walls are adiabatic. The governing equations are solved using Control volume method by SIMPLEC algorithm. The sections dimension ε = D / H and the Rayleigh number Ra were fixed respectively at 0,35 and 106. The average heat transfer and the maximum temperature on the active portions will be examined for a given set of the governing parameters, namely the amplitude of the variable temperatures a and their period τp. The obtained results show significant changes in terms of heat transfer, by proper choice of the heating mode and the governing parameters.


2005 ◽  
Vol 129 (2) ◽  
pp. 236-240 ◽  
Author(s):  
Jun Wen ◽  
M. M. Khonsari

An analytical technique is presented for treating heat conduction problems involving a body experiencing oscillating heat flux on its boundary. The boundary heat flux is treated as a combination of many point heat sources, each of which emits heat intermittently based on the motion of the flux. The working function of the intermittent heat source with respect to time is evaluated by using the Fourier series and temperature profile of each point heat source is derived by using the Duhamel’s theorem. Finally, by superposition of the temperature fields over all the point heat sources, the temperature profile due to the original moving heat flux is determined. Prediction results and verification using finite element method are presented for an oscillatory heat flux in a rectangular domain.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 178
Author(s):  
Mohammed Alghaseb ◽  
Walid Hassen ◽  
Abdelhakim Mesloub ◽  
Lioua Kolsi

In this study, a 3D numerical study of free ventilated room equipped with a discrete heat source was performed using the Finite Volume Method (FVM). To ensure good ventilation, two parallel openings were created in the room. A suction opening was located at the bottom of the left wall and another opening was located at the top of the opposite wall; the heat source was placed at various positions in order to compare the heating efficiency. The effects of Rayleigh number (103 ≤ Ra ≤ 106) for six heater positions was studied. The results focus on the impact of these parameters on the particle trajectories, temperature fields and on the heat transfer inside the room. It was found that the position of the heater has a dramatic effect on the behavior and topography of the flow in the room. When the heat source was placed on the wall with the suction opening, two antagonistic behaviors were recorded: an improvement in heat transfer of about 31.6%, compared to the other positions, and a low Rayleigh number against 22% attenuation for high Ra values was noted.


2021 ◽  
Author(s):  
Wenchang Zhang ◽  
Yingjie Xu ◽  
Xinyu Hui ◽  
Weihong Zhang

Abstract This paper develops a multi-objective optimization method for the cure of thick composite laminates. The purpose is to minimize the cure time and maximum temperature overshoot in the cure process by designing the cure temperature profile. This method combines the finite element based thermo-chemical coupled cure simulation with the non-dominated sorting genetic algorithm-II (NSGA-II). In order to investigate the influence of the number of dwells on the optimization result, four-dwell and two-dwell temperature profiles are selected for the design variables. The optimization method obtains successfully the Pareto optimal front of the multi-objective problem in thick and ultra-thick laminates. The result shows that the cure time and maximum temperature overshoot are both reduced significantly. The optimization result further illustrates that the four-dwell cure profile is more e ective than the two-dwell, especially for the ultra-thick laminates. Through the optimization of the four-dwell profile, the cure time is reduced by 51.0% (thick case) and 30.3% (ultra-thick case) and the maximum temperature overshoot is reduced by 66.9% (thick case) and 73.1% (ultra-thick case) compared with the recommended cure profile. In addition, Self-organizing map (SOM) is employed to visualize the relationships between the design variables with respect to the optimization result.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Xiangqian Liu ◽  
Yan Yu ◽  
Shengli Yang ◽  
Huijie Liu

In the conventional analytical model used for heat generation in friction stir welding (FSW), the heat generated at the pin/workpiece interface is assumed to distribute uniformly in the pin volume, and the heat flux is applied as volume heat. Besides, the tilt angle of the tool is assumed to be zero for simplicity. These assumptions bring about simulating deviation to some extent. To better understand the physical nature of heat generation, a modified analytical model, in which the nonuniform volumetric heat flux and the tilt angle of the tool were considered, was developed. Two analytical models are then implemented in the FEM software to analyze the temperature fields in the plunge and traverse stage during FSW of AA6005A-T6 aluminum hollow extrusions. The temperature distributions including the maximum temperature and heating rate between the two models are different. The thermal cycles in different zones further revealed that the peak temperature and temperature gradient are very different in the high-temperature region. Comparison shows that the modified analytical model is accurate enough for predicting the thermal cycles and peak temperatures, and the corresponding simulating precision is higher than that of the conventional analytical model.


Author(s):  
Fre´de´ric Damian

Along with the GFR another gas-cooled reactor identified in the Gen IV technology roadmap, the VHTR is studied in France. Some models have been developed at CEA relying on existing computational tools essentially dedicated to the prismatic block type reactor. These models simulate normal operating conditions and accidental reactor transients by using neutronic [1], thermal-hydraulic, system analysis codes [2], and their coupling [3, 4]. In the framework of the European RAPHAEL project, this paper presents the results of the preliminary investigations carried out on the VHTR design. These studies aimed at understanding the physical aspects of the annular core and to identify the limits of a standard block type VHTR with regard to a degradation of its passive safety features. Analysis was performed considering various geometrical scales: fuel cell and fuel column located at the core hot spot, 2D and 3D core configurations including the coupling between neutronic and thermal-hydraulic. From the thermal analysis performed at the core hot spot, the capability to reduce the maximum fuel temperature by modifying the design parameters such as the fuel compact and the fuel block geometry was assessed. The best performances are obtained for an annular fuel compact geometry with coolant flowing inside and outside the fuel compact (ΔT > 50°C). The reliability of such design option should however be addressed with respect to its performance during the LOFC transient (the residual decay heat will be evacuated by radiation during the transient instead of conduction through graphite). As far as the fuel element geometry is concerned, a gain of approximately 50°C can be achieved by making limited changes on the fuel compact distribution in the prismatic block: reduction of the number of fuel compact in the outer ring of the fuel element where the average ratio between coolant channels and fuel compact is smaller. On the other hand, the adopted modifications should also be evaluated with respect to the maximum temperature gradient achieved in the fuel (amoeba effect). In the end, calculations performed on the full core configuration taking into account the thermal feedback showed that the radial positioning of the fuel elements allows to reduce significantly the power peaking factor and the maximum fuel temperature. The gain on the fuel temperature, which varies during the core irradiation, is in the range 100 – 150°C. Several modifications such as the increase of the bypass fraction and the replacement of a part of the graphite reflector by material with better thermal properties were also addressed in this paper.


2018 ◽  
Vol 240 ◽  
pp. 01001 ◽  
Author(s):  
Omar Rafae Alomar ◽  
Rafie Rushdy Mohammed ◽  
Karam Hashim Mohammed

Two-Phase flow in an inclined rectangular porous media, under unsteady-state condition, has been numerically investigated in this article, based on the modified h-formulation of Two-Phase Mixture Model (TPMM). The governing equations have been discretised using Finite Volume Method (FVM) and solved iteratively in a SIMPLE-like manner. Effects of various parameters on the flow and temperature fields have been investigated, which clearly demonstrated that the inclination angle strongly affect the boiling initiation. Recirculating flow has been observed when the inclination angle θ>0˚. The results clearly indicated that the operating conditions and the porous medium properties have significant effects on the initiation and termination of phase change process. A closer inspection of the results reveals that the presence of a critical inclination angle depending on the value of K* and, Re1 which correspond to a maximum values of vapour volume. The modified h-formulation requires significantly less computational time as compared with the existing H-formulation of TPMM.


Author(s):  
Zhiqiang Li ◽  
Xiaowei Fan ◽  
Fang Wang ◽  
Dasi He ◽  
Shifei Wei

This paper focuses on the cooling solution to a high energy density and large capacity Li-ion battery system which consist of four packs of 26650 cells. The cooling measure is a critical technology for many Li-ion battery systems especially that designed for hybrid electric vehicles, in which, high energy density within a limited space is very common in these systems. Both the safety and efficiency of Li-ion battery cells rely on the temperature which is under control of the battery thermal management system. In this study, temperature fields within battery boxes are simulated with the computational fluid dynamic (CFD) method. With the help of an airconditioner, a cooling solution is proposed for a relatively large dimensional, high energy density Li-ion battery cells array using by vehicles. Through the proposed solution, the maximum single-cell temperature is restricted to a reasonable level, and the maximum temperature difference throughout the battery system is also improved.


2011 ◽  
Vol 217-218 ◽  
pp. 674-679
Author(s):  
Jian Sun ◽  
Wei Qiang Liu

By the uses of finite element method and finite volume method, we calculated the solid domain and fluid domain of windward leading edge which is flying under one condition. And the paper proved that heat pipes which covered on the leading edge have effect on thermal protection. The maximum temperature of the head decreased 12.2%. And the minimum temperature of after-body increased 8.85%. Achieving the transfer of heat from head to after-body, the front head of the thermal load was weakened and the ability of leading edge thermal protection was strengthen. The effect of the thickness of heat pipe, black level of covering materials and equivalent thermal conductivity of heat pipes on the wall temperature were discussed for the selection of thermal protection materials of windward leading edge to provide a frame of reference.


1986 ◽  
Vol 108 (2) ◽  
pp. 277-283 ◽  
Author(s):  
L. Robillard ◽  
T. H. Nguyen ◽  
P. Vasseur

A study is made of the natural convection in an annular porous layer having an isothermal inner boundary and its outer boundary subjected to a thermal stratification arbitrarily oriented with respect to gravity. For such conditions, no symmetry can be expected for the flow and temperature fields with respect to the vertical diameter and the whole circular region must be considered. Two-dimensional steady-state solutions are sought by perturbation and numerical approaches. Results obtained indicate that the circulating flow around the annulus attains its maximum strength when the stratification is horizontal (heating from the side). This circulating flow is responsible for an important heat exchange between the porous layer and its external surroundings. The flow field is also characterized by the presence of two convective cells near the inner boundary, giving rise to flow reversal on this surface. When the maximum temperature on the outer boundary is at the bottom of the cavity, the convective motion becomes potentially unstable; for a Rayleigh number below 80, there exists a steady-state solution symmetrical with respect to both vertical and horizontal axes; for a Rayleigh number above 80, an unsteady periodic situation develops with the circulating flow alternating its direction around the annulus.


Sign in / Sign up

Export Citation Format

Share Document