Expression of goose parvovirus whole VP3 protein and its epitopes in Escherichia coli cells

2015 ◽  
Vol 18 (4) ◽  
pp. 879-880 ◽  
Author(s):  
K. Tarasiuk ◽  
G. Woźniakowski ◽  
L. Holec-Gąsior

Abstract The aim of this study was the expression of goose parvovirus capsid protein (VP3) and its epitopes in Escherichia coli cells. Expression of the whole VP3 protein provided an insufficient amount of protein. In contrast, the expression of two VP3 epitopes (VP3ep4, VP3ep6) in E. coli, resulted in very high expression levels. This may suggest that smaller parts of the GPV antigenic determinants are more efficiently expressed than the complete VP3 gene.

1982 ◽  
Vol 152 (1) ◽  
pp. 26-34
Author(s):  
M Leduc ◽  
R Kasra ◽  
J van Heijenoort

Various methods of inducing autolysis of Escherichia coli cells were investigated, some being described here for the first time. For the autolysis of growing cells only induction methods interfering with the biosynthesis of peptidoglycan were taken into consideration, whereas with harvested cells autolysis was induced by rapid osmotic or EDTA shock treatments. The highest rates of autolysis were observed after induction by moenomycin, EDTA, or cephaloridine. The different autolyses examined shared certain common properties. In particular, regardless of the induction method used, more or less extensive peptidoglycan degradation was observed, and 10(-2) M Mg2+ efficiently inhibited the autolytic process. However, for other properties a distinction was made between methods used for growing cells and those used for harvested cells. Autolysis of growing cells required RNA, protein, and fatty acid synthesis. No such requirements were observed with shock-induced autolysis performed with harvested cells. Thus, the effects of Mg2+, rifampicin, chloramphenicol, and cerulenin clearly suggest that distinct factors are involved in the control of the autolytic system of E. Coli. Uncoupling agents such as sodium azide, 2,4-dinitrophenol, and carbonyl-cyanide-m-chlorophenyl hydrazone used at their usual inhibiting concentration had no effect on the cephaloridine or shock-induced autolysis.


2007 ◽  
Vol 70 (6) ◽  
pp. 1339-1345 ◽  
Author(s):  
RENEE R. BOYER ◽  
SUSAN S. SUMNER ◽  
ROBERT C. WILLIAMS ◽  
MERLE D. PIERSON ◽  
DAVID L. POPHAM ◽  
...  

Curli fibers are produced by some Escherichia coli cells in response to environmental stimuli. These extracellular proteins enhance the cell's ability to form biofilms on various abiotic surfaces. E. coli O157:H7 cells readily attach to a variety of fruit and vegetable surfaces. It is not known whether the expression of curli influences the cell's ability to attach to produce surfaces. In this study, the effect of curli expression on the cell's overall hydrophobicity, charge, and ability to attach to cut and whole iceberg lettuce surfaces was examined. All strains, regardless of curli expression, attached preferentially to the cut edges of lettuce (P < 0.05). The curli-producing cells of E. coli O157:H7 strain E0018 attached in significantly greater numbers to both cut and whole lettuce pieces than did the non–curli-producing E0018 cells (P < 0.05); however, no significant attachment differences were observed between the curli-producing and non–curli-producing cells of E. coli O157:H7 strains 43894 and 43895. All curli-producing E. coli O157:H7 strains were significantly more hydrophobic (P < 0.01); however, no association between the cells' hydrophobic characteristics and lettuce attachment was observed. Overall surface charge of the cells did not differ among strains or curli phenotypes. Results indicate that overall hydrophobicity and cell charge in E. coli O157:H7 strains do not influence attachment to iceberg lettuce surfaces. The presence of curli may not have any influence on attachment of E. coli O157:H7 cells to produce items. Additional factors may influence the attachment of E. coli O157:H7 to plant surfaces and should be further examined.


1996 ◽  
Vol 184 (2) ◽  
pp. 449-455 ◽  
Author(s):  
C Arrecubieta ◽  
R López ◽  
E García

The cap3B gene, which is involved in the formation of the capsule of Streptococcus pneumoniae type 3, encodes a 49-kD protein that has been identified as a polysaccharide synthase. Escherichia coli cells harboring the recombinant plasmid pTBP3 (cap3B) produced pneumococcal type 3 polysaccharide, as demonstrated by immunological tests. Biochemical and cell fractionation analyses revealed that this polysaccharide had a high molecular mass and was localized in substantial amounts in the periplasmic space of E. coli. Unencapsulated (S-2), laboratory pneumococcal strains synthesized type 3 polysaccharide by transformation with plasmid pLSE3B harboring cap3B. In addition, encapsulated pneumococci of types 1, 2, 5, or 8 transformed with pLSE3B can direct the synthesis of pneumococcal type 3 polysaccharide, leading to the formation of strains that display binary type of capsule.


2012 ◽  
Vol 198 (5) ◽  
pp. 881-893 ◽  
Author(s):  
Eunyong Park ◽  
Tom A. Rapoport

The transport of proteins across the plasma membrane in bacteria requires a channel formed from the SecY complex, which cooperates with either a translating ribosome in cotranslational translocation or the SecA ATPase in post-translational translocation. Whether translocation requires oligomers of the SecY complex is an important but controversial issue: it determines channel size, how the permeation of small molecules is prevented, and how the channel interacts with the ribosome and SecA. Here, we probe in vivo the oligomeric state of SecY by cross-linking, using defined co- and post-translational translocation intermediates in intact Escherichia coli cells. We show that nontranslocating SecY associated transiently through different interaction surfaces with other SecY molecules inside the membrane. These interactions were significantly reduced when a translocating polypeptide inserted into the SecY channel co- or post-translationally. Mutations that abolish the interaction between SecY molecules still supported viability of E. coli. These results show that a single SecY molecule is sufficient for protein translocation.


2010 ◽  
Vol 59 (9) ◽  
pp. 1050-1054 ◽  
Author(s):  
Stephen P. Hawser ◽  
Robert E. Badal ◽  
Samuel K. Bouchillon ◽  
Daryl J. Hoban ◽  

A total of 542 clinical isolates of aerobic Gram-negative bacilli from intra-abdominal infections were collected during 2008 from seven hospitals in India participating in the Study for Monitoring Antimicrobial Resistance Trends (SMART). Isolates were from various infection sources, the most common being gall bladder (30.1 %) and peritoneal fluid (31.5 %), and were mostly hospital-associated isolates (70.8 %) as compared to community-acquired (26.9 %). The most frequently isolated pathogens were Escherichia coli (62.7 %), Klebsiella pneumoniae (16.7 %) and Pseudomonas aeruginosa (5.3 %). Extended-spectrum β-lactamase (ESBL) rates in E. coli and K. pneumoniae were very high, at 67 % and 55 %, respectively. Most isolates exhibited resistance to one or more antibiotics. The most active drugs were generally ertapenem, imipenem and amikacin. However, hospital-acquired isolates in general, as well as ESBL-positive isolates, exhibited lower susceptibilities than community-acquired isolates. Further surveillance monitoring of intra-abdominal isolates from India is recommended.


2012 ◽  
Vol 75 (1) ◽  
pp. 62-70 ◽  
Author(s):  
JOHN B. LUCHANSKY ◽  
ANNA C. S. PORTO-FETT ◽  
BRADLEY A. SHOYER ◽  
JEFFREY E. CALL ◽  
WAYNE SCHLOSSER ◽  
...  

We compared the fate of cells of both Shiga toxin–producing Escherichia coli O157:H7 (ECOH) and Shiga toxin–producing non-O157:H7 E. coli (STEC) in blade-tenderized steaks after tenderization and cooking on a gas grill. In phase I, beef subprimal cuts were inoculated on the lean side with about 5.5 log CFU/g of a five-strain mixture of ECOH or STEC and then passed once through a mechanical blade tenderizer with the lean side facing up. In each of two trials, 10 core samples were removed from each of two tenderized subprimals and cut into six consecutive segments starting from the inoculated side. Ten total cores also were obtained from two nontenderized (control) subprimals, but only segment 1 (the topmost segment) was sampled. The levels of ECOH and STEC recovered from segment 1 were about 6.0 and 5.3 log CFU/g, respectively, for the control subprimals and about 5.7 and 5.0 log CFU/g, respectively, for the tenderized subprimals. However, both ECOH and STEC behaved similarly in terms of translocation, and cells of both pathogen cocktails were recovered from all six segments of the cores obtained from tenderized subprimals, albeit at lower levels in segments 2 to 6 than those found in segment 1. In phase II, steaks (2.54 and 3.81 cm thick) cut from tenderized subprimals were subsequently cooked (three steaks per treatment) on a commercial open-flame gas grill to internal temperatures of 48.9, 54.4, 60.0, 65.6, and 71.1°C. Regardless of temperature or thickness, we observed 2.0- to 4.1-log and 1.5- to 4.5-log reductions in ECOH and STEC levels, respectively. Both ECOH and STEC behaved similarly in response to heat, in that cooking eliminated significant numbers of both pathogen types; however, some survivors were recovered due, presumably, to uneven heating of the blade-tenderized steaks.


Metallomics ◽  
2015 ◽  
Vol 7 (4) ◽  
pp. 683-690 ◽  
Author(s):  
Constanze Pinske ◽  
Frank Sargent ◽  
R. Gary Sawers

The metallochaperone SlyD is essential for nickel delivery to hydrogenase in stationary phaseE. colicells.


1989 ◽  
Vol 63 (1) ◽  
pp. 19-24 ◽  
Author(s):  
S. O. Adedeji ◽  
E. O. Ogunba ◽  
O. O. Dipeolu

ABSTRACTThe effect of intestinal flora on the establishment, development and pathogenicity of Ascaris suum larvae in piglets (Large White breed) was investigated. The infected piglets with Ascaris and Escherichia coli showed signs of pneumonia, cough with respiratory difficulties initially even though these moderated with time. They lost appetite and showed signs of unthriftiness with loss of weight. The packed cell volume was normal but the differential leucocyte counts of the pigs infected with Ascaris larvae and bacteria had high neutrophils, unlike the very high lymphocyte count observed in piglets with ascarids only. The piglets had generalized serous atrophy of body fat. The pericardial and perirenal fats were gelatinous. There was a firm and nodular grey and red hepatization with abscess pockets in the intermediate and anterior one third of the diaphragmatic lobes of the lungs. The liver contained greyish-white and depressed focus immediately dorsal to the area of attachment to the gall bladder with multifocal areas. There was no significant gross lesion in the control animals. Cultural and microscopic examinations of some internal organs of the infected animals showed that bacteria were carried to the lungs by the migrating Ascaris larvae. The combined synergistic effect of Ascaris larvae and E. coli was also investigated and it was concluded that the two agents (A. suum larvae and E. coli) worked together synergistically.


2012 ◽  
Vol 40 (5) ◽  
pp. 950-954 ◽  
Author(s):  
Andres Binolfi ◽  
Francois-Xavier Theillet ◽  
Philipp Selenko

The notion that human α-synuclein is an intrinsically disordered monomeric protein was recently challenged by a postulated α-helical tetramer as the physiologically relevant protein structure. The fact that this alleged conformation had evaded detection for so many years was primarily attributed to a widely used denaturation protocol to purify recombinant α-synuclein. In the present paper, we provide in-cell NMR evidence obtained directly in intact Escherichia coli cells that challenges a tetrameric conformation under native in vivo conditions. Although our data cannot rule out the existence of other intracellular protein states, especially in cells of higher organisms, they indicate clearly that inside E. coli α-synuclein is mostly monomeric and disordered.


2006 ◽  
Vol 188 (14) ◽  
pp. 5145-5152 ◽  
Author(s):  
Masaru Tamura ◽  
Kangseok Lee ◽  
Christine A. Miller ◽  
Christopher J. Moore ◽  
Yukio Shirako ◽  
...  

ABSTRACT Inactivation or deletion of the RNase E-encoding rne gene of Escherichia coli results in the growth of bacterial cells as filamentous chains in liquid culture (K. Goldblum and D. Apirion, J. Bacteriol. 146:128-132, 1981) and the loss of colony-forming ability (CFA) on solid media. RNase E dysfunction is also associated with abnormal processing of ftsQAZ transcripts (K. Cam, G. Rome, H. M. Krisch, and J.-P. Bouché, Nucleic Acids Res. 24:3065-3070, 1996), which encode proteins having a central role in septum formation during cell division. We show here that RNase E regulates the relative abundances of FtsZ and FtsA proteins and that RNase E depletion results in decreased FtsZ, increased FtsA, and consequently an altered FtsZ/FtsA ratio. However, while restoration of the level of FtsZ to normal in rne null mutant bacteria reverses the filamentation phenotype, it does not restore CFA. Conversely, overexpression of a related RNase, RNase G, in rne-deleted bacteria restores CFA, as previously reported, without affecting FtsZ abundance. Our results demonstrate that RNase E activity is required to maintain a proper cellular ratio of the FtsZ and FtsA proteins in E. coli but that FtsZ deficiency does not account for the nonviability of cells lacking RNase E.


Sign in / Sign up

Export Citation Format

Share Document