Preparation and characterization of polyvinyl alcohol/carbon nanotube (PVA/CNT) conductive nanofibers

2012 ◽  
Vol 32 (6-7) ◽  
pp. 407-413 ◽  
Author(s):  
Ozcan Koysuren

Abstract The aim of this study was to prepare polyvinyl alcohol/carbon nanotube (PVA/CNT) conductive nanofibers by the electrospinning process. Prior to composite preparation, carbon nanotubes are dispersed homogeneously in N-methyl-2-pyrrolidone (NMP) and mixed with a PVA solution. A series of PVA/CNT films and nanofibers with various CNT compositions are prepared. Electrical conductivity and specific capacitance of spin-coated PVA/CNT films and electrospun PVA/CNT fibers increase with an increase in CNT content. Electrospun PVA/CNT nanofibers with a larger electrode surface result in a higher specific capacitance when compared with spin-coated PVA/CNT films. According to the morphology analysis, homogeneous and highly porous PVA/CNT mats containing 50–300 nm diameter nanofibers are obtained by the electrospinning process.

2009 ◽  
Vol 1240 ◽  
Author(s):  
Ji-Ye Kang ◽  
Su-Mi Eo ◽  
Loon-Seng Tan ◽  
Jong-Beom Baek

AbstractSingle-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) were functionalized with 3,4-diaminobenzoic acid via “direct” Friedel-Crafts acylation reaction in PPA/P2O5 to afford ortho-diamino-functionalized SWCNT (DIF-SWCNT) and MWCNT (DIF-MWCNT). The resultant DIF-SWCNT and DIF-MWCNT showed improved solubility and dispersibility. To improve interfacial adhesion between CNT and polymer matrix, the grafting of ABPBI onto the surface of DIF-SWCNT (10 wt%) or DIF-MWCNT (10 wt%) was conducted by simple in-situ polymerization of AB monomer, 3,4-diaminobenzoic acid dihydrochloride, in PPA. The resultant ABPBI-g-MWCNT and ABPBI-g-SWCNT showed improved the mechanical and electrical properties.


Author(s):  
Taajza Singleton ◽  
Lawrence Kulinsky

Abstract Carbon nanotubes (CNTs) have been implemented in the creation of many micro- and nano-devices due to their physical properties such as large volume-to-surface area as well as their high thermal and electrical conductivity. The paper describes a novel dielectrophoretic step-wise deposition of CNTs (that alternates deposition of CNTs and drying steps) between the interdigitated fingers of carbon electrodes. Multiphysics simulation illustrates the physics of CNT alignment along the electrical field lines that forms a basis for dielectrophoretic deposition of CNTs. This fabrication methodology resulted in the creation of a proof-of-concept nitrogen gas sensor.


Author(s):  
Seunghyun Baik ◽  
Byeongsoo Lim ◽  
Bumjoon Kim ◽  
Untae Sim ◽  
Seyoung Oh ◽  
...  

Carbon nanotubes have received considerable attention because of their excellent mechanical properties. In this study, carbon nanotube - copper composites have been sintered by a mechanical mixing process. The interfacial bonding between nanotubes and the copper matrix was improved by coating nanotubes with nickel. Sintered pure copper samples were used as control materials. The displacement rate of nanotube-copper composites was found to increase at 200°C whereas that of nickel-coated nanotue-copper composites significantly decreased. The incorporation of carbon nanotubes and nickel-coated carbon nanotubes in the copper matrix decreased friction coefficients and increased the time up to the onset of scuffing compared with those of pure copper specimens.


2004 ◽  
Vol 2 (2) ◽  
pp. 363-370 ◽  
Author(s):  
A. Mierczynska ◽  
J. Friedrich ◽  
H. Maneck ◽  
G. Boiteux ◽  
J. Jeszka

AbstractIn this work we present the preparation of conductive polyethylene/carbon nanotube composites based on the segregated network concept. Attention has been focused on the effect of decreasing the amount of filler necessary to achieve low resistivity. Using high- and low-grade single-walled carbon nanotube materials we obtained conductive composites with a low percolation threshold of 0.5 wt.% for high-grade nanotubes, about 1 wt% for commercial nanotubes and 1.5 wt% for low-grade material. The higher percolation threshold for low-grade material is related to low effectiveness of other carbon fractions in the network formation. The electrical conductivity was measured as a function of the single-walled carbon nanotubes content in the polymer matrix and as a function of temperature. It was also found that processing parameters significantly influenced the electrical conductivity of the composites. Raman spectroscopy was applied to study single wall nanotubes in the conductive composites.


Author(s):  
Reza Rizvi ◽  
Sara Makaremi ◽  
Steven Botelho ◽  
Elaine Biddiss ◽  
Hani Naguib

This study examines the piezoresistive behavior of polymer-conducting filler composites. Piezoresistive composites of Poly(dimethyl-siloxane)-Multiwall Carbon Nanotube (PDMS-MWNT) were prepared using a direct mixing approach. The dispersion and the electrical conductivity of the composites were characterized at various MWNT compositions. The piezoresistive behavior under compression was measured using an Instron Universal Tester/Digital Sourcemeter combination. Negative piezoresistive behavior was observed signifying a reducing mean inter-particulate distance in the composites. Moreover, the sensitivities increased at two compositional values of 3 and 5 wt% MWNT in PDMS, which was associated with the state of MWNT dispersion observed. Tensile piezoresistive behavior of the PDMS-MWNT adhered on a fabric substrate was also characterized. Positive piezoresistive values, indicating increasing inter-particulate distance, were observed. Significant challenges in the implementation of PDMS-MWNT as sensory materials in electronic-textile applications were observed as a result of this study and have been discussed.


2018 ◽  
Vol 5 (1) ◽  
pp. 48-63 ◽  
Author(s):  
Peter Laux ◽  
Christian Riebeling ◽  
Andy M. Booth ◽  
Joseph D. Brain ◽  
Josephine Brunner ◽  
...  

Characterization of carbon nanotube dispersions requires measurement of both, concentration and surface area.


2012 ◽  
Vol 1371 ◽  
Author(s):  
Laura Peña-Parás ◽  
Hubert Phillips ◽  
Enrique V. Barrera

ABSTRACTDispersions of carbon nanotube polymer composites were characterized by Raman mapping.Single-walled nanotubes (SWNTs), double-walled nanotubes (DWNTs), multi-walled nanotubes (MWNTs), and XD-grade carbon nanotubes (XD-CNTs) were dispersed in a vinyl ester (VE) resin using an ultrasonic probe at a fixed frequency. SWNTs were functionalized with succinic acid peroxide (SAP) to enhance dispersion. Increasing ultrasonication energy was found to improve the distribution of carbon nanotubes (CNTs) and decrease the size of ropes, whereas excessive amounts of energy were found to result in damage. The quality of dispersion was verified through optical microscopy and scanning electron microscopy (SEM).


Sign in / Sign up

Export Citation Format

Share Document