Wastes generated by mineral extraction industries

2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Karolina Wieszczycka

Abstract Mineral extraction industries at each mining step generate large volume of waste, and most of them represent potentially sources of crucial metals. This chapter describes extraction and main mining processes, principal classifications of the generated wastes, as well as the chemical properties of the waste material, their disposal and further treatment to recover metals. Most of the presented technological solutions are or have been tested in real processes or using real waste materials.

Author(s):  
Anand G ◽  
Tharunkumar N

Concrete ingredients is different material like binding material (cement+ fly ash), fine aggregate, coarse aggregate and water. Today construction cost is very high with using conventional materials due to unavailability of natural materials. This problem can be solved by total replacement of concrete with different material which is not convenient in terms of required properties. Due to this limitation of unavailability of material which plays the vital role of concrete we have only choice of partial replacement of concrete ingredients by waste materials. Overv4.2 billion tons of cement was consumed globally in 2018 based on survey of world coal association and also cement production emits CO2 in to the atmosphere which is harmful to the nature. If we can partially replace the cement with the material with desirable properties then we can save natural material and reduce emission of CO2 in to the atmosphere. This industrial waste dumping to the nearest site which spoils the land and atmosphere as well as it also affects aesthetics of urban environment so use of this waste material in concrete is cost effective as well as environment friendly way to disposal of waste. The primary objective of this study is to select the waste material which gives desirable properties with concrete. This study includes previous investigation done on the mechanical and chemical properties of concrete produced using partial replacement of cement by waste materials.


1986 ◽  
Vol 21 (3) ◽  
pp. 344-350 ◽  
Author(s):  
Barry G. Oliver ◽  
Klaus L.E. Kaiser

Abstract The concent rat ions of hexachloroethane (HCE), hexachlorobutadiene (HCBD), pentachlorobenzene (QCB), hexachlorobenzene (HCB) and octachlorostyrene (OCS) in large volume water samples show that the major sources of these chemicals to the St. Clair River are Dow Chemical Company effluents and, to a lesser degree, Sarnia’s Township ditch which drains one of Dow’s waste disposal sites. Tributaries entering the river on both sides of the Canada/United States border contain measurable concentrations of these chemicals indicating low level contamination throughout the area. The degree of water/suspended sediment partitioning of the chemicals (Kp) was studied. Kp values for the individual chemicals changed in a manner consistent with changes in their physical-chemical properties.


2015 ◽  
Vol 754-755 ◽  
pp. 369-372
Author(s):  
Muhamad Azani Yahya ◽  
Mohammed Alias Yusof ◽  
Norita Ridzuan ◽  
Mohamad Yusrin Yahya ◽  
Ahmad Azizi Ab Aziz

Discovering about sustainability, construction sector should be a part of participant in utilizing waste materials for the benefits of the industry. The idea of converting waste materials into some application can contribute to sustainability and greening the earth. Apart from that, research must be done to promote the waste material into economic and useful construction material. A concept of going green must be adopted rather than just thinking of the rapid construction as the whole project aim. This paper promotes sugarcane bagasse as an additive for construction material in 3 ways which are on concrete strength improver, a concrete retarder and composite brick. The sugarcane bagasse were blended and mixed with 30MPa concrete with certain ratio and tested for compressive, flexural, water absorption and penetration. From the tests, it shows that the sugarcane bagasse gives a positive impact to concrete. Therefore, the usage of sugarcane bagasse can be considered as a concept of utilizing waste material for sustainable approach.


2020 ◽  
Vol 32 ◽  
pp. 209-223
Author(s):  
Adelina Miteva ◽  
Valeria Stoyanova

This brief overview presents an attempt to systematize some of the available historical and recent data on the impact of zeolite science and engineering on the progress of various areas of Earth and Space development. The basic structural and chemical properties of natural and synthetic zeolites are presented. Valuable applications of the zeolites, such as catalysts, gas adsorbers and ion exchangers are also included. The most commonly used methods for the synthesis of zeolites from different materials are presented, as well as some Bulgarian developments for the reuse of waste materials to zeolites. The important role of zeolites as an indispensable material for improving the quality of soil, fuels, water, air, etc., required for the needs of orbiting space stations and spacecrafts has been confirmed by typical examples.


2021 ◽  
Vol 1200 (1) ◽  
pp. 012008
Author(s):  
K Supar ◽  
F A A Rani ◽  
N L Mazlan ◽  
M K Musa

Abstract The use of waste material as a partial replacement has become popular in concrete mixture studies. Many research has utilized waste materials like cement, fine aggregate, coarse aggregate, and reinforcing materials substitute. The current paper focuses on some of the waste elements that are utilized in a concrete mortar (use in roof tile) as a partial replacement for fine aggregates such as rubber ash, sawdust, seashells, crumb rubber, pistachio shells, cinder sand, stone dust, and copper slag. There are many variations of mix proportion and water-cement ratio for every waste material. Compressive strength was compared and found that stone dust and the combination of seashell and coconut fiber shows an incensement when used to replacing fine aggregate. The suitable replacement level for stone dust is 25% and 50%. While the suitable replacement levels for the combination of sea shell and coconut fiber are 20% and 30%. Material from the rubber families such as rubber crumb and rubber ash is only suitable for replacement levels. Rubber families especially rubber crumbs have shown low water absorption value which is good in the production of roofing products. As we know, the roof should have waterproof properties to prevent any leaks from happening when it rains. Most of the waste materials added as fine aggregates in concrete have increased the amount of water absorption and found that sawdust is the most abundant material with a high percentage of water absorption compared to the others. Research on the partial replacement of fine aggregates replaced with waste materials is needed more extensively to provide more confidence about their use in concrete mortars, especially on roof tiles.


2020 ◽  
Vol 6 ◽  
pp. 42-60
Author(s):  
Abdalrhman Abrahim Milad ◽  
Ahmed Suliman B. Ali ◽  
Nur Izzi Md Yusoff

The possibility of using waste materials in road construction is of great interest as their utilisation may contribute to reducing the problems of hazard and pollution and conserve natural resources. Thus, there is an urgent need to find a sustainable method for using waste materials as a substitute in the standard asphalt binders. There are several concerns about the physical and chemical properties and mechanical performance of asphalt pavements incorporated with waste material in the effort to reduce permanent deformation of the road surface. This review article presents a brief discussion of the asphalt mixtures modified with waste material, and the recycled materials used as a modifier in the asphalt mixture. The present paper summarises the use of crumb rubber, crushed concrete, steel slag, glass fibre and plastic waste in asphalt mixtures. The use of waste materials as a modifier in asphalt mixture resulted in improved asphalt pavement performance. Results advocate that rubberised asphalt mixture with desired properties can be designed as an additive with a friendly environmental approach in construction materials. The researches that adopted the influence of usage, recycle waste material to improve the performance of the asphalt of the road are still limited compared to other construction fields. Doi: 10.28991/cej-2020-SP(EMCE)-05 Full Text: PDF


2020 ◽  
Vol 20 (11) ◽  
pp. 6975-6979
Author(s):  
Hyun Jin Yoo ◽  
Mohsen Mohammadniaei ◽  
Junhong Min ◽  
Changyoon Baek

Graphene oxide (GO) is a well-known two-dimensional nanomaterial with broad applications in various fields. In particular, the functional groups of GO has demonstrated significance in the molecular binding interactions. GO is normally coated on a solid surface as it is difficult to handle due to its nano-scaled size. Therefore, chemical properties of surface-coated GO depend on the morphological structure of GO on the surface and the operating conditions during the coating process. Isolation of bacteria from environmental samples such as river and pond water is important for increasing the analytical sensitivity of sensor devices. The main issue in isolation of bacteria from an environmental sample is adsorption capacity per unit time. However, increasing the velocity of water sample to elevate the process rate induces high shear stress on the surface, such that the bacteria adsorption rate on the surface is reduced. In this study, we investigated the morphological and chemical properties of sonicated GO and GO-coated surface by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The sonicated GO-coated beads were successfully used for concentrating bacteria from a large-volume sample as opposed to the conventional methods. It can be concluded that, GO-coated surfaces are prospective platforms for concentrating bacteria from various samples and play a major role in reducing the concentration time.


Sign in / Sign up

Export Citation Format

Share Document