Diketopyrrolopyrrole (DPP) pigments

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract Since their industrial introduction in the 1980s, DPP pigments now constitute a highly important group of high-performance carbonyl pigments. The DPP system was first discovered by accident in 1974, and was subsequently re-investigated by Ciba Geigy who recognized its potential to provide commercial organic pigments. DPP pigments exhibit strong similarities compared with quinacridone pigments, in terms of their molecular and crystal structures and their properties, including low solubility and excellent fastness properties. X-ray crystal structural analysis has demonstrated that their technical performance is the result of intermolecular hydrogen bonding and π–π stacking interactions in the crystal lattice structure. Based on a simple retrosynthetic analysis, an efficient synthetic process was developed by Ciba Geigy for their large-scale manufacture. DPP pigments currently provide orange through to reddish violet shades and have become of special importance in providing brilliant saturated red shades with the outstanding durability required for applications such as automotive paints.

2015 ◽  
Vol 137 (11) ◽  
Author(s):  
Tino Stanković ◽  
Jochen Mueller ◽  
Paul Egan ◽  
Kristina Shea

Recent progress in additive manufacturing (AM) allows for printing customized products with multiple materials and complex geometries that could form the basis of multimaterial designs with high performance and novel functions. Effectively designing such complex products for optimal performance within the confines of AM constraints is challenging due to the need to consider fabrication constraints while searching for optimal designs with a large number of variables, which stem from new AM capabilities. In this study, fabrication constraints are addressed through empirically characterizing multiple printed materials' Young's modulus and density using a multimaterial inkjet-based 3D-printer. Data curves are modeled for the empirical data describing two base printing materials and 12 mixtures of them as inputs for a computational optimization process. An optimality criteria (OC) method is developed to search for solutions of multimaterial lattices with fixed topology and truss cross section sizes. Two representative optimization studies are presented and demonstrate higher performance with multimaterial approaches in comparison to using a single material. These include the optimization of a cubic lattice structure that must adhere to a fixed displacement constraint and a compliant beam lattice structure that must meet multiple fixed displacement constraints. Results demonstrate the feasibility of the approach as a general synthesis and optimization method for multimaterial, lightweight lattice structures that are large-scale and manufacturable on a commercial AM printer directly from the design optimization results.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract This chapter surveys the structural and synthetic chemistry and the industrial applications of quinacridones, a small but extremely important group of high-performance carbonyl (or polycyclic) organic pigments. They are based on one of the most important new chromophoric systems developed specifically for pigment applications after the introduction of the phthalocyanines, and currently occupy a prominent position in the red to violet shade areas. A historical perspective on the discovery and commercial development of the quinacridones is presented initially. There then follows an illustrated discussion of the structural chemistry of the pigments, encompassing both molecular and crystal structures. Throughout the chapter, specific features of their molecular structures and the nature of the intermolecular association within the crystals are related to their influence on the color and technical performance in application, in which they exhibit some of the highest standards of heat stability, solvent resistance, and fastness to light and weather encountered in organic pigments. Finally, a survey of the principal current applications of the specific individual commercial quinacridone pigments is presented.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract Carbonyl pigments are characterized by the presence of one or more carbonyl (C = O) groups in their structures, generally as a component of the chromophoric grouping and as part of an extended conjugated π-electron system. Structurally, they constitute a diverse group of pigments that offer a wide range of colors throughout the spectrum, and most of them provide high levels of technical performance. This paper provides a description of the historical development of thioindigoid, isoindoline, isoindolinone, and quinophthalone pigment types, and discusses their molecular and crystal structures in relation to their properties, the synthetic procedures used in their manufacture and their principal applications. They provide some of the most important high-performance yellow organic pigments for demanding applications in paints, inks, and plastics. Separate individual chapters in this series are devoted the anthraquinonoid, quinacridone, diketopyrrolopyrrole, perylene, and perinone carbonyl pigment subclasses.


Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.


Author(s):  
В.В. ГОРДЕЕВ ◽  
В.Е. ХАЗАНОВ

При выборе типа доильной установки и ее размера необходимо учитывать максимальное планируемое поголовье дойных коров и размер технологической группы, кратность и время одного доения, продолжительность рабочей смены дояров. Анализ технико-экономических показателей наиболее распространенных на сегодняшний день типов доильных установок одинакового технического уровня свидетельствует, что наилучшие удельные показатели имеет установка типа «Карусель» (1), а установка типа «Елочка» (2) требует более высоких затрат труда и средств. Установка «Параллель» (3) занимает промежуточное положение. Из анализа пропускной способности и количества необходимых операторов: установка 2 рекомендована для ферм с поголовьем дойного стада до 600 голов, 3 — не более 1200 дойных коров, 1 — более 1200 дойных коров. «Карусель» — наиболее рациональный, высокопроизводительный, легко автоматизируемый и, следовательно, перспективный способ доения в залах, особенно для крупных молочных ферм. The choice of the proper type and size of milking installations needs to take into account the maximum planned number of dairy cows, the size of a technological group, the number of milkings per day, and the duration of one milking and the operator's working shift. The analysis of technical and economic indicators of currently most common types of milking machines of the same technical level revealed that the Carousel installation had the best specific indicators while the Herringbone installation featured higher labour inputs and cash costs. The Parallel installation was found somewhere in between. In terms of the throughput and the required number of operators Herringbone is recommended for farms with up to 600 dairy cows, Parallel — below 1200 dairy cows, Carousel — above 1200 dairy cows. Carousel was found the most practical, high-performance, easily automated and, therefore, promising milking system for milking parlours, especially on the large-scale dairy farms.


Author(s):  
Mark Endrei ◽  
Chao Jin ◽  
Minh Ngoc Dinh ◽  
David Abramson ◽  
Heidi Poxon ◽  
...  

Rising power costs and constraints are driving a growing focus on the energy efficiency of high performance computing systems. The unique characteristics of a particular system and workload and their effect on performance and energy efficiency are typically difficult for application users to assess and to control. Settings for optimum performance and energy efficiency can also diverge, so we need to identify trade-off options that guide a suitable balance between energy use and performance. We present statistical and machine learning models that only require a small number of runs to make accurate Pareto-optimal trade-off predictions using parameters that users can control. We study model training and validation using several parallel kernels and more complex workloads, including Algebraic Multigrid (AMG), Large-scale Atomic Molecular Massively Parallel Simulator, and Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics. We demonstrate that we can train the models using as few as 12 runs, with prediction error of less than 10%. Our AMG results identify trade-off options that provide up to 45% improvement in energy efficiency for around 10% performance loss. We reduce the sample measurement time required for AMG by 90%, from 13 h to 74 min.


Radiation ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 79-94
Author(s):  
Peter K. Rogan ◽  
Eliseos J. Mucaki ◽  
Ben C. Shirley ◽  
Yanxin Li ◽  
Ruth C. Wilkins ◽  
...  

The dicentric chromosome (DC) assay accurately quantifies exposure to radiation; however, manual and semi-automated assignment of DCs has limited its use for a potential large-scale radiation incident. The Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) software automates unattended DC detection and determines radiation exposures, fulfilling IAEA criteria for triage biodosimetry. This study evaluates the throughput of high-performance ADCI (ADCI-HT) to stratify exposures of populations in 15 simulated population scale radiation exposures. ADCI-HT streamlines dose estimation using a supercomputer by optimal hierarchical scheduling of DC detection for varying numbers of samples and metaphase cell images in parallel on multiple processors. We evaluated processing times and accuracy of estimated exposures across census-defined populations. Image processing of 1744 samples on 16,384 CPUs required 1 h 11 min 23 s and radiation dose estimation based on DC frequencies required 32 sec. Processing of 40,000 samples at 10 exposures from five laboratories required 25 h and met IAEA criteria (dose estimates were within 0.5 Gy; median = 0.07). Geostatistically interpolated radiation exposure contours of simulated nuclear incidents were defined by samples exposed to clinically relevant exposure levels (1 and 2 Gy). Analysis of all exposed individuals with ADCI-HT required 0.6–7.4 days, depending on the population density of the simulation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie

Abstract This paper presents an overview of the general chemical principles underlying the structures, synthesis and technical performance of azo pigments, the dominant chemical class of industrial organic pigments in the yellow, orange, and red shade areas, both numerically and in terms of tonnage manufactured. A description of the most significant historical features in this group of pigments is provided, starting from the discovery of the chemistry on which azo colorants are based by Griess in the mid-nineteenth century, through the commercial introduction of the most important classical azo pigments in the early twentieth century, including products known as the Hansa Yellows, β-naphthol reds, including metal salt pigments, and the diarylide yellows and oranges, to the development in the 1950s and 1960s of two classes of azo pigments that exhibit high performance, disazo condensation pigments and benzimidazolone-based azo pigments. A feature that complicates the description of the chemical structures of azo pigments is that they exist in the solid state as the ketohydrazone rather than the hydroxyazo form, in which they have been traditionally been illustrated. Numerous structural studies conducted over the years on an extensive range of azo pigments have demonstrated this feature. In this text, they are referred to throughout as azo (hydrazone) pigments. Since a common synthetic procedure is used in the manufacture of virtually all azo (hydrazone) pigments, this is discussed in some detail, including practical aspects. The procedure brings together two organic components as the fundamental starting materials, a diazo component and a coupling component. An important reason for the dominance of azo (hydrazone) pigments is that they are highly cost-effective. The syntheses generally involve low cost, commodity organic starting materials and are carried out in water as the reaction solvent, which offers obvious economic and environmental advantages. The versatility of the approach means that an immense number of products may be prepared, so that they have been adapted structurally to meet the requirements of many applications. On an industrial scale, the processes are straightforward, making use of simple, multi-purpose chemical plant. Azo pigments may be produced in virtually quantitative yields and the processes are carried out at or below ambient temperatures, thus presenting low energy requirements. Finally, provided that careful control of the reaction conditions is maintained, azo pigments may be prepared directly by an aqueous precipitation process that can optimise physical form, with control of particle size distribution, crystalline structure, and surface character. The applications of azo pigments are outlined, with more detail reserved for subsequent papers on individual products.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 843
Author(s):  
Tamara Ortiz ◽  
Federico Argüelles-Arias ◽  
Belén Begines ◽  
Josefa-María García-Montes ◽  
Alejandra Pereira ◽  
...  

The best conservation method for native Chilean berries has been investigated in combination with an implemented large-scale extract of maqui berry, rich in total polyphenols and anthocyanin to be tested in intestinal epithelial and immune cells. The methanolic extract was obtained from lyophilized and analyzed maqui berries using Folin–Ciocalteu to quantify the total polyphenol content, as well as 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) to measure the antioxidant capacity. Determination of maqui’s anthocyanins profile was performed by ultra-high-performance liquid chromatography (UHPLC-MS/MS). Viability, cytotoxicity, and percent oxidation in epithelial colon cells (HT-29) and macrophages cells (RAW 264.7) were evaluated. In conclusion, preservation studies confirmed that the maqui properties and composition in fresh or frozen conditions are preserved and a more efficient and convenient extraction methodology was achieved. In vitro studies of epithelial cells have shown that this extract has a powerful antioxidant strength exhibiting a dose-dependent behavior. When lipopolysaccharide (LPS)-macrophages were activated, noncytotoxic effects were observed, and a relationship between oxidative stress and inflammation response was demonstrated. The maqui extract along with 5-aminosalicylic acid (5-ASA) have a synergistic effect. All of the compiled data pointed out to the use of this extract as a potential nutraceutical agent with physiological benefits for the treatment of inflammatory bowel disease (IBD).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract Perylenes and perinones are separate groups of pigments categorized within the carbonyl chemical class. The two pigment groups show similarities, for example, in their chemical structural features and, to an extent, in their technical and application properties as high-performance organic pigments. Perylenes constitute a series of firmly established high-performance pigments, offering red and violet colors, and also extending to black. Synthetically, they are derived from perylene-1,4,5,8-tetracarboxylic acid. The perylenes tend to be quite expensive pigments, but their high levels of fastness properties mean that they are suitable for highly demanding applications. In particular, they offer very high heat stability. Two perinone pigments are used commercially. In their synthesis from naphthalene-1,4,5,8-tetracarboxylic acid, they are formed as mixtures of the two isomers, which can be separated. The trans isomer, CI Pigment Orange 43, is a highly important commercial pigment, especially for plastics, while the cis isomer, CI Pigment Red 194, is bordeaux in color and is of much lesser importance. The perinone, CI Pigment Orange 43, provides a brilliant orange color and has very good fastness properties. Its commercial manufacture involves a challenging multistage procedure and consequently it is one of the most expensive organic pigments on the market.


Sign in / Sign up

Export Citation Format

Share Document