Investigation on the efficient separation and recovery of Se(IV) and Se(VI) from wastewater using Fe–OOH–bent

2021 ◽  
Vol 109 (5) ◽  
pp. 377-387
Author(s):  
Junqiang Yang ◽  
Yawen Chen ◽  
Juan Tong ◽  
Yin Su ◽  
Xiaoqing Gao ◽  
...  

Abstract Decontamination of the toxic selenium compound, selenite (Se(IV)) and selenate (Se(VI)), from wastewater is imperative for environmental protection. Efficient approaches to remove Se(IV) and Se(VI) are in urgent needs. In this work, an accessible adsorbent Fe–OOH–bent was prepared and applied for the removal of Se(IV) and Se(VI) from wastewater. The batch experimental results demonstrate that Fe–OOH–bent exhibits high adsorption capacities of 5.01 × 10−4 and 2.28 × 10−4 mol/g for Se(IV) and Se(VI) respectively, which are higher than most of the reported bentonite based materials, especially in the case of Se(VI). Moreover, the Fe–OOH–bent displayed superior selectivity towards Se(IV) and Se(VI) even in the presence of excess competitive anions (Cl−, HCO3 −, NO3 −, SO4 2− and PO4 3−) and HA with concentrations of 1000 times higher than Se(IV) and Se(VI). By evaluating the adsorption ratio of Se(IV) and Se(VI), the reusability of Fe–OOH–bent was great through five adsorption-desorption cycles. For practical application, the column experiments were performed with simulated wastewater samples. The breakthrough and eluting curves of Se(IV) and Se(VI) were investigated through the columns packed with Fe–OOH–bent, and the results show that Se(IV) and Se(VI) can be successfully separated and recovered using 0.1 mol/L Na2SO4 (pH = 9.0) and 0.1 mol/L Na3PO4 (pH = 9.0), respectively. Our work provides a new approach for fractional separation as well as the recovery of Se(IV) and Se(VI) from wastewater.

RSC Advances ◽  
2014 ◽  
Vol 4 (99) ◽  
pp. 56216-56223 ◽  
Author(s):  
Xuejiao Sun ◽  
Yujie Li ◽  
Hongxia Xi ◽  
Qibin Xia

A novel composite MIL-101@GO based on MIL-101(Cr) and graphite oxide (GO) shows high adsorption capacities and excellent adsorption–desorption performance for a series of n-alkanes.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3209
Author(s):  
Aphiwe Siyasanga Gugushe ◽  
Anele Mpupa ◽  
Tshimangadzo Saddam Munonde ◽  
Luthando Nyaba ◽  
Philiswa Nosizo Nomngongo

In this study, Fe3O4-ZrO2 functionalized with 3-aminopropyltriethoxysilane (Fe3O4-ZrO2@APS) nanocomposite was investigated as a nanoadsorbent for the removal of Cd(II), Cu(II), Mn (II) and Ni(II) ions from aqueous solution and real samples in batch mode systems. The prepared magnetic nanomaterials were characterized using X-ray powder diffraction (XRD), scanning electron microscopy/energy dispersion x-ray (SEM/EDX) Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Factors (such as adsorbent dose and sample pH) affecting the adsorption behavior of the removal process were studied using the response surface methodology. Under optimized condition, equilibrium data obtained were fitted into the Langmuir and Freundlich isotherms and the data fitted well with Langmuir isotherms. Langmuir adsorption capacities (mg/g) were found to be 113, 111, 128, and 123 mg/g for Cd, Cu, Ni and Mn, respectively. In addition, the adsorption kinetics was analyzed using five kinetic models, pseudo-first order, pseudo-second order, intraparticle diffusion and Boyd models. The adsorbent was successfully applied for removal of Cd(II), Cu(II), Mn (II) and Ni(II) ions in wastewater samples.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3014 ◽  
Author(s):  
Peter Caley ◽  
Geoffrey R. Hosack ◽  
Simon C. Barry

Wildlife collision data are ubiquitous, though challenging for making ecological inference due to typically irreducible uncertainty relating to the sampling process. We illustrate a new approach that is useful for generating inference from predator data arising from wildlife collisions. By simply conditioning on a second prey species sampled via the same collision process, and by using a biologically realistic numerical response functions, we can produce a coherent numerical response relationship between predator and prey. This relationship can then be used to make inference on the population size of the predator species, including the probability of extinction. The statistical conditioning enables us to account for unmeasured variation in factors influencing the runway strike incidence for individual airports and to enable valid comparisons. A practical application of the approach for testing hypotheses about the distribution and abundance of a predator species is illustrated using the hypothesized red fox incursion into Tasmania, Australia. We estimate that conditional on the numerical response between fox and lagomorph runway strikes on mainland Australia, the predictive probability of observing no runway strikes of foxes in Tasmania after observing 15 lagomorph strikes is 0.001. We conclude there is enough evidence to safely reject the null hypothesis that there is a widespread red fox population in Tasmania at a population density consistent with prey availability. The method is novel and has potential wider application.


2017 ◽  
Vol 18 (2) ◽  
pp. 460-472 ◽  
Author(s):  
E. Shokri ◽  
R. Yegani ◽  
B. Pourabbas ◽  
B. Ghofrani

Abstract In this work, montmorillonite (Mt) was modified by environmentally friendly arginine (Arg) and lysine (Lys) amino acids with di-cationic groups for arsenic removal from contaminated water. The modified Mts were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, zeta potential and thermal analysis. The adsorption of As(V) onto modified Mts as a function of initial As(V) concentration, contact time and solution pH was investigated. The removal efficiency was increased with increasing the As(V) concentration and contact time; however, it was decreased with increasing solution pH. The maximum As(V) adsorption capacities of Mt-Arg and Mt-Lys were 11.5 and 11 mg/g, respectively, which were five times larger than pristine Mt. The high adsorption capacity makes them promising candidates for arsenic removal from contaminated water. The regeneration studies were carried out up to 10 cycles for both modified Mts. The obtained results confirmed that the modified adsorbents could also be effectively used for As(V) removal from water for multiple adsorption – desorption cycles.


2019 ◽  
Vol 48 (3) ◽  
pp. 1095-1107 ◽  
Author(s):  
Meng-Jung Tsai ◽  
Jheng-Hua Luo ◽  
Jing-Yun Wu

A rhombus (4,4) grid showing two-fold 2D + 2D → 2D interweaved nets appeared to be a good adsorbent to selectively adsorb and separate anionic methyl orange (MO) and acid orange 7 (AO7) dyes over cationic methylene blue (MB) and malachite green (MG) from water with high adsorption capacities in both darkness and daylight.


RSC Advances ◽  
2015 ◽  
Vol 5 (11) ◽  
pp. 8190-8193 ◽  
Author(s):  
Feng Xiao ◽  
Liping Fang ◽  
Wentao Li ◽  
Dongsheng Wang

Aluminum magnesium oxide nanocomposites were prepared using a one-step microwave assisted solvothermal method, and showed high adsorption capacities for the removal of both As(v) and Pb(ii) ions in water.


Chemosphere ◽  
2012 ◽  
Vol 88 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Alipio Bermúdez-Couso ◽  
David Fernández-Calviño ◽  
Isabel Rodríguez-Salgado ◽  
Juan Carlos Nóvoa-Muñoz ◽  
Manuel Arias-Estévez

2017 ◽  
Vol 57 (2) ◽  
pp. 131 ◽  
Author(s):  
Alice Vagenknechtová ◽  
Karel Ciahotný ◽  
Veronika Vrbová

SiO<sub>2</sub> deposits which cause technical problems on combustion equipment are built by combustion of biogas containing siloxanes. Therefore, in these cases, the siloxanes must be removed from the biogas. For siloxane removal from biogas, its adsorption on activated carbon is often used. After saturation, the saturated adsorbent must be replaced. The adsorbent cost constitutes the main part of the operational costs of the purification equipment. Therefore it is necessary to find an adsorbent having high adsorption capacity for siloxane at a possible low price. Using laboratory apparatus and biogas produced from waste-water treatment sludge at the wastewater treatment plant Prague Bubenec various activated carbons were tested for siloxane removal and their adsorption capacities for siloxanes were estimated, and the adsorbent cost relative to 1 kg of siloxanes removed from biogas were calculated. The lowest price for the removal of 1 kg of siloxanes was determined by Chezacarb, Sil Extra 40 AP and 4–60 adsorbents. Another important information obtained from the test is that the weakly adsorbed siloxane (OMCTS) is displaced by the larger molecule of DMCPCS during adsorption.


2020 ◽  
Vol 10 (12) ◽  
pp. 4235 ◽  
Author(s):  
Andrzej Paszkiewicz ◽  
Marek Bolanowski ◽  
Grzegorz Budzik ◽  
Piotr Sowa ◽  
Tomasz Pisz ◽  
...  

In this paper, the authors present a completely new approach to the remote prototyping process, taking into account the distributed nature of design and manufacturing resources. A new model is suggested, taking into account the conditions of the Industry 4.0 concept, along with a component of remote implementation and coordination of operations. On the basis of this model, the architecture of the target system is developed, which is further built and implemented in the actual productive environment. The system’s functionality additionally enables the implementation of the design and production process in critical conditions resulting from natural disasters or epidemic states. The practical application of the developed solutions is presented on the design of a ventilator, which is dedicated to help in the fight against epidemic states, e.g., coronavirus.


2019 ◽  
Vol 80 (7) ◽  
pp. 1357-1366
Author(s):  
Jianming Liu ◽  
Runying Bai ◽  
Junfeng Hao ◽  
Bowen Song ◽  
Yu Zhang ◽  
...  

Abstract This study investigated a magnetically recycled modified polishing powder (CMIO@PP) as an adsorbent of phosphate; the CMIO@PP was synthesized by combining the modified La/Ce-containing waste polishing powder with CaO2-modified Fe3O4 (CMIO). Results indicate that the CMIO@PP nanocomposite presents a crystal structure comprising La (OH)3, Ce (OH)3, and Fe3O4, and that CMIO is uniformly dispersed in the modified polishing powder. The CMIO@PP (1:3) is a suitable choice considering its magnetism and adsorption capacity. The magnetic adsorbent exhibits a high adsorption capacity of 53.72 mg/g, a short equilibrium time of 60 min, and superior selectivity for phosphate. Moreover, the adsorbent strongly depends on the pH during the adsorption process and maintains a large adsorption capacity when the pH level is between 2 and 6. The adsorption of phosphate by the CMIO@PP (1:3) accords with the Langmuir isotherm model, and the adsorption process follows the pseudo-second order model. Meanwhile, adsorption–desorption experiments show that the adsorbent could be recycled a few times and that a high removal efficiency of phosphate from civil wastewater was achieved. Finally, mechanisms show that the adsorption of phosphate by the CMIO@PP (1:3) is mainly caused by electrostatic attraction and ligand exchange.


Sign in / Sign up

Export Citation Format

Share Document