scholarly journals Adsorption removal of methylene blue from aqueous solution on carbon-coated Fe3O4 microspheres functionalized with chloroacetic acid

2018 ◽  
Vol 25 (2) ◽  
pp. 353-361
Author(s):  
Zefei Zhang ◽  
Cholhwan Kim ◽  
Carlos Fernandez ◽  
Manickam Minakshi Sundaram ◽  
Thippeswamy Ramakrishnappa ◽  
...  

AbstractWe report the preparation and employability of carbon-coated Fe3O4(Fe3O4/C) microspheres functionalized with chloroacetic acid (CAA) for the removal of methylene blue (MB) in aqueous solution. The prepared magnetic microspheres (Fe3O4/C-CAA) were characterized by the following techniques: X-ray diffraction, transmission electron microscopy, Fourier-transform infrared spectrometer, vibrating sample magnetometry, and Brunauer-Emmett-Teller. The characterization results showed that Fe3O4/C microspheres were modified by CAA without any phase change. Fe3O4/C-CAA microspheres have higher adsorption capacity for MB compared to Fe3O4/C microspheres. The Langmuir, Freundlich, and Temkin adsorption models were applied to describe the equilibrium isotherms, and the Langmuir adsorption model fitted well with the equilibrium data. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetics data. However, the pseudo-second-order kinetic model fitted better with the adsorption kinetics data.

2021 ◽  
Vol 10 (1) ◽  
pp. 59-66
Author(s):  
Son Le Lam ◽  
Phu Nguyen Vinh ◽  
Hieu Le Trung ◽  
Tan Le Thua ◽  
Nhan Dang Thi Thanh ◽  
...  

Glucomannan/graphene oxide (GM/GO) hydrogel was synthesized by using calcium hydroxide as the crosslinker. The synthesized material was characterized by using IR, XRD, SEM, EDX and RAMAN technology. The composite hydrogel was used for removal of organic dyes from aqueous solution. The results showed that the GM/GO hydrogel had a porous structure and a high adsorption capacity toward methylene blue (MB). The pseudo-second-order kinetic model could fit the rate equation of MB adsorption onto the GM/GO hydrogel. The adsorption of MB onto GM/GO hydrogel was a spontaneous process. In addition, the equilibrium adsorption isotherm data indicated that equilibrium data were fitted to the Langmuir isotherm and the maximum dye adsorption capacity was 198,69 mg.g-1. Moreover, the hydrogel was stable and easily recovered and adsorption capacity was around 97% of the initial saturation adsorption capacity after being used five times.


2013 ◽  
Vol 68 (2) ◽  
pp. 441-447 ◽  
Author(s):  
Diego S. Paz ◽  
Alexandre Baiotto ◽  
Marcio Schwaab ◽  
Marcio A. Mazutti ◽  
Mariana M. Bassaco ◽  
...  

In this study papaya seeds were used to remove methylene blue dye from aqueous solution. Papaya seeds were characterized as possessing a macro/mesoporous texture and large pore size. Studies were carried out in batches to evaluate the effect of contact time and pH (2–12) on the removal of dye. It was observed that the adsorption of dye was better in the basic region (pH 12). The equilibrium data were analyzed using Langmuir, Freundlich, Dubinin–Raduschkevich, Tempkin, Jovanovich, Redlich–Peterson, Sips, Toth and Radke–Prausnitz isotherms. The equilibrium data were best described by the Langmuir isotherm with a maximum adsorption capacity of 637.29 mg g–1. Adsorption kinetic data were fitted using the pseudo-first-order and pseudo-second-order model. The adsorption kinetic is very fast and was best described by the pseudo-second-order model.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Asma Nasrullah ◽  
Hizbullah Khan ◽  
Amir Sada Khan ◽  
Zakaria Man ◽  
Nawshad Muhammad ◽  
...  

The ash ofC. polygonoides(locally called balanza) was collected from Lakki Marwat, Khyber Pakhtunkhwa, Pakistan, and was utilized as biosorbent for methylene blue (MB) removal from aqueous solution. The ash was used as biosorbent without any physical or chemical treatment. The biosorbent was characterized by using various techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The particle size and surface area were measured using particle size analyzer and Brunauer-Emmett-Teller equation (BET), respectively. The SEM and BET results expressed that the adsorbent has porous nature. Effects of various conditions such as initial concentration of methylene blue (MB), initial pH, contact time, dosage of biosorbent, and stirring rate were also investigated for the adsorption process. The rate of the adsorption of MB on biomass sample was fast, and equilibrium has been achieved within 1 hour. The kinetics of MB adsorption on biosorbent was studied by pseudo-first- and pseudo-second-order kinetic models and the pseudo-second-order has better mathematical fit with correlation coefficient value (R2) of 0.999. The study revealed thatC. polygonoidesash proved to be an effective, alternative, inexpensive, and environmentally benign biosorbent for MB removal from aqueous solution.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Seraj Anwar Ansari ◽  
Fauzia Khan ◽  
Anees Ahmad

Cauliflower leaf powder (CLP), a biosorbent prepared from seasonal agricultural crop waste material, has been employed as a prospective adsorbent for the removal of a basic dye, methylene blue (MB) from aqueous solution by the batch adsorption method under varying conditions, namely, initial dye concentration, adsorbent dose, solution pH, and temperature. Characterization of the material by FTIR and SEM indicates the presence of functional groups and rough coarse surface suitable for the adsorption of methylene blue over it. Efforts were made to fit the isotherm data using Langmuir, Freundlich, and Temkin equation. The experimental data were best described by Freundlich isotherm model, with an adsorption capacity of 149.22 mg/g at room temperature. To evaluate the rate of methylene blue adsorption onto CLP, pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were employed. The experimental data were best described by the pseudo-second-order kinetic model. Evaluation of thermodynamic parameters such as changes in enthalpy, entropy, and Gibbs’ free energy showed the feasible, spontaneous, and exothermic nature of the adsorption process. On the basis of experimental results obtained, it may be concluded that the CLP prepared from agricultural waste has considerable potential as low-cost adsorbent in wastewater treatment for the removal of basic dye, MB.


2011 ◽  
Vol 130-134 ◽  
pp. 829-832
Author(s):  
Jin Xia Mu ◽  
Ming Juan Shi ◽  
Xiao Ying Wu ◽  
Jin Ye Li

The adsorption of methylene blue (MB) from aqueous solution using a low-cost adsorbent, ginkgo leaf powder, has been studied. The equilibrium data were fitted to Langmuir and Freundlich isotherms and the equilibrium adsorption was best described by the Langmuir isotherm model with maximum monolayer adsorption capacities found to be 39 mg/g. The sorption was analyzed using pseudo-first-order and pseudo-second order kinetic models, and the sorption kinetics was found to follow a pseudo-second order kinetic model. Ginkgo leaf appears as a prospective adsorbent for the removal of methylene blue from aqueous solution.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 450
Author(s):  
Bayan Khalaf ◽  
Othman Hamed ◽  
Shehdeh Jodeh ◽  
Ghadir Hanbali ◽  
Roland Bol ◽  
...  

In this study, cellulose-based derivatives with heterocyclic moieties were synthesized by reacting cellulose with furan-2-carbonyl chloride (Cell-F) and pyridine-2,6-dicarbonyl dichloride (Cell-P). The derivatives were evaluated as adsorbents for the pesticide tetraconazole from aqueous solution. The prepared adsorbents were characterized by SEM, TGA, IR, and H1 NMR instruments. To maximize the adsorption efficiency of tetraconazole, the optimum conditions of contact time, pH, temperature, adsorbent dose, and initial concentration of adsorbate were determined. The highest removal percentage of tetraconazole from water was 98.51% and 95% using Cell-F and Cell-P, respectively. Underivatized nanocellulose was also evaluated as an adsorbent for tetraconazole for comparison purpose, and it showed a removal efficiency of about 91.73%. The best equilibrium adsorption isotherm model of each process was investigated based on the experimental and calculated R2 values of Freundlich and Langmuir models. The adsorption kinetics were also investigated using pseudo-first-order, pseudo-second-order, and intra-particle-diffusion adsorption kinetic models. The Van’t Hoff plot was also studied for each adsorption to determine the changes in adsorption enthalpy (∆H), Gibbs free energy (∆G), and entropy (∆S). The obtained results showed that adsorption by Cell-F and Cell-P follow the Langmuir adsorption isotherm and the mechanism follows the pseudo-second-order kinetic adsorption model. The obtained negative values of the thermodynamic parameter ∆G (−4.693, −4.792, −5.549 kJ) for nanocellulose, Cell-F, and Cell-P, respectively, indicate a spontaneous adsorption process. Cell-F and Cell-P could be promising absorbents on a commercial scale for tetraconazole and other pesticides.


2016 ◽  
Vol 74 (9) ◽  
pp. 2021-2035 ◽  
Author(s):  
Mohammad Ali Zazouli ◽  
Ali Azari ◽  
Samaneh Dehghan ◽  
Razieh Salmani Malekkolae

In this study, eucalyptus bark and Crataegus oxyacantha core-based activated carbon were synthesized and their morphological features characterized by scanning electron microscopy and Fourier transform infrared spectroscopy techniques. The efficiency of synthesized adsorbents in removal of methylene blue (MB) from aqueous solution was investigated in a series of batch experiments. Furthermore, the influences of various experimental factors involving the contact time, the initial dye concentration, the adsorbent dosage, and the pH of the dye solution were investigated. The point of zero charge (pHpzc) of the applied adsorbents was also determined. In addition, the experimental data were expressed by Langmuir, Freundlich and Tempkin isotherms and pseudo-first order and pseudo-second order kinetic models. Adsorption equilibrium of the two adsorbents was reached within 1 h for MB concentrations of 20 to 100 mg/L. The equilibrium data obtained at optimum conditions of MB sorption by eucalyptus bark activated carbon and Crataegus oxyacantha core activated carbon were best fitted to Tempkin and Langmuir isotherm models, respectively. Besides, it was revealed that the adsorption rate follows a pseudo-second order kinetic model. From the findings of this study, it can be postulated that these adsorbents could be of great potential as a new class of adsorbents for organic dye removal from polluted water.


Author(s):  
Aya Abbas Najim ◽  
Ahmed A. Mohammed

The sorption of nickel (II) and methylene blue dye (MB) from aqueous solution by alkaline treated algae biomass was investigated. 0.05 M NaOH resulted in increasing the removal efficiency of algae biomass from 77.48 to 97.43% and from 79.71 to 97.53 % for Ni (II) and MB, respectively. Pseudo first order, pseudo second order and intra- particle diffusion kinetic models were tested, good coefficients of determination (R2) were attained from pseudo second order kinetic model for both contaminants; therefore, chemical adsorption was the mechanism that governed the sorption process by alkaline treated algae. The data were best fitted to Langmuir isotherm model and a maximum sorption capacity achieved were 2.889 mg/g for Ni (II) and 6.406 mg/g for MB. The separation factor shows irreversible isotherm type due to RL  1 for both contaminants. Alkali pretreatment of algae mixture could be an effective and low cost strategy for enhancing Ni (II) and MB sorption from aqueous solution.


2013 ◽  
Vol 295-298 ◽  
pp. 1154-1160 ◽  
Author(s):  
Guo Zhi Deng ◽  
Xue Yuan Wang ◽  
Xian Yang Shi ◽  
Qian Qian Hong

The objective of this paper is to investigate the feasibility of phenol adsorption from aqueous solution by Pinus massoniana biochar. Adsorption conditions, including contact time, initial phenol concentration, adsorbent dosage, strength of salt ions and pH, have been investigated by batch experiments. Equilibrium can be reached in 24 h for phenol from 50 to 250 mg• L-1. The optimum pH value for this kind of biochar is 5.0. The amount of phenol adsorbed per unit decreases with the increase in adsorbent dosage. The existence of salt ions makes negligible influence on the equilibrium adsorption capacity. The experimental data is analyzed by the Freundlich and Langmuir isotherm models. Equilibrium data fits well to the Freundlich model. Adsorption kinetics models are deduced and the pseudo-second-order kinetic model provides a good correlation for the adsorbent process. The results show that the Pinus massoniana biochar can be utilized as an effective adsorption material for the removal of phenol from aqueous solution.


Author(s):  
Mohamed Nasser Sahmoune ◽  
Krim Louhab ◽  
Aissa Boukhiar

Dead streptomyces rimosus was found to be an effective biosorbent for the removal of chromium from industrial tanning effluents. A sorption level of 65 mg/g was observed at pH 4.8 while the precipitation effect augmented this value at a higher pH range. Chromium desorption increased with decreasing desorption agents pH (including HCl and H2SO4) to a maximum value of 95% at approximately zero pH. The biosorption data of trivalent chromium by streptomyces rimosus has been used for kinetic studies based on fractional power, Elovich, pseudo-first order and pseudo-second order rate expressions. The time-dependent Cr (III) biosorption data were well-described by a pseudo-second-order kinetic model. The intraparticle diffusion is not the rate-limiting step for the whole reaction. It was found that the biosorption equilibrium data fit well with the Langmuir model.


Sign in / Sign up

Export Citation Format

Share Document