scholarly journals Investigation of Blade Angle of an Open Cross-Flow Runner

2015 ◽  
Vol 32 (1) ◽  
Author(s):  
Yusuke Katayama ◽  
Shouichiro Iio ◽  
Salisa Veerapun ◽  
Tomomi Uchiyama

AbstractThe aim of this study was to develop a nano-hydraulic turbine utilizing drop structure in irrigation channels or industrial waterways. This study was focused on an open-type cross-flow turbine without any attached equipment for cost reduction and easy maintenance. In this study, the authors used an artificial indoor waterfall as lab model. Test runner which is a simple structure of 20 circular arc-shaped blades sandwiched by two circular plates was used The optimum inlet blade angle and the relationship between the power performance and the flow rate approaching theoretically and experimentally were investigated. As a result, the optimum inlet blade angle due to the flow rate was changed. Additionally, allocation rate of power output in 1st stage and 2nd stage is changed by the blade inlet angle.

MECHANICAL ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 57
Author(s):  
Jorfri Boike Sinaga ◽  
Azhar Azhar ◽  
Novri Tanti ◽  
Sugiman Sugiman

This paper presents the design of parameters of  hydraulic ram pump and hydraulic turbine to use  the energy of flowing water for water supply to generate electrical power and irrigation. Design of  parameters of hydraulic ram pump with head of water supply of 1,5 m was obtained: 1,25 in. diameter and  8 m length of drive pipe,  200 gr and 4,6 cm of weight  and diameter of impulse valve,  4.200 cm3 of air chamber volume. The testing results of the hydraulic ram pump model shown that water could be pumped as far as the height of 7 m and 8 m, with the volume flow rate of 2,755 lit/men and 1,73 lit/men.  Design of  geometric parameters of cross flow hydraulic turbine with head of water supply of 1,75 m was obtained:  12 cm and 8 cm of external and internal diameter, 25 cm of runner width,  and 18 of runner number.   The testing results of the cross flow hydraulic turbine shown that power could be generated 83,47 W with the volume flow rate of 0,01 lit/s and the efficiency of 71,05 % at 799 rpm. The testing result also shown that with using volume flow rate of 0,003 lit/s, this turbine could be generated 23,39 W with the efficiency of 46,64 %. Technically the technology of hydraulic ram pump can be developped and used to supply of water for irrigation and generating of electrical power.


2021 ◽  
Vol 15 (1) ◽  
pp. 1491-1507
Author(s):  
Calogero Picone ◽  
Marco Sinagra ◽  
Costanza Aricò ◽  
Tullio Tucciarelli

2012 ◽  
Vol 58 (2) ◽  
Author(s):  
New Mei Yet ◽  
Vijay R. Raghavan ◽  
W.M. Chin

A detailed characterization is carried out on a typical cross flow fan used in the Heating, Ventilation, and Air Conditioning (HVAC) industry, in order to understand the fan design in detail. The study is carried out numerically by use of the software FLUENT and followed by experimental validation. Appropriate grid size selection has done, the RMS error is less than 7%. From the study, it is concluded that the thickness of the blade determines the total flow area and flow rate delivered. When the internal blade angle is at 90°, shock free entry is incurred and maximum flow rate can be achieved. The external blade angle should be within 20 to 45 degrees, to avoid rapid drop of pressure coefficient and efficiency. Lastly, the formation of the eccentric vortex zone inside the cross flow fan and flow field pattern are observed. The forming location and size of the zone determines the total air flow rate delivered and the amount of flow leakage through the tongue. Thus, the efficiency of the fan is highly sensitive to the flow structure in this zone.


Author(s):  
Masahiro Yamazaki ◽  
Shingo Oike ◽  
Shouichiro Iio ◽  
Toshihiko Ikeda

The aim of this investigation is to develop an open type cross-flow runner for environmentally friendly nano-hydraulic turbine utilizing extremely low head waterfalls. The waterfall condition is strongly affected by weather, so flow rate changes frequently. It causes a decrease in runner performance because it does not have any flow adjusting mechanisms. It is, therefore, important to evaluate the runner performance against the change of flow condition for stable power generation. This study focused on the influence of waterfall flowing position and its thickness on the runner performance. An open type cross-flow runner was applied for waterfall generation. As a result, we found that the runner characteristic varied with the waterfall condition. In particular, the waterfall thickness has great influence on the runner performance. The value of CPmax reaches the highest value of 0.61 at Q = 3.0×10−3 m3/s.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satoshi Miyamoto ◽  
Zu Soh ◽  
Shigeyuki Okahara ◽  
Akira Furui ◽  
Taiichi Takasaki ◽  
...  

AbstractThe need for the estimation of the number of microbubbles (MBs) in cardiopulmonary bypass surgery has been recognized among surgeons to avoid postoperative neurological complications. MBs that exceed the diameter of human capillaries may cause endothelial disruption as well as microvascular obstructions that block posterior capillary blood flow. In this paper, we analyzed the relationship between the number of microbubbles generated and four circulation factors, i.e., intraoperative suction flow rate, venous reservoir level, continuous blood viscosity and perfusion flow rate in cardiopulmonary bypass, and proposed a neural-networked model to estimate the number of microbubbles with the factors. Model parameters were determined in a machine-learning manner using experimental data with bovine blood as the perfusate. The estimation accuracy of the model, assessed by tenfold cross-validation, demonstrated that the number of MBs can be estimated with a determinant coefficient R2 = 0.9328 (p < 0.001). A significant increase in the residual error was found when each of four factors was excluded from the contributory variables. The study demonstrated the importance of four circulation factors in the prediction of the number of MBs and its capacity to eliminate potential postsurgical complication risks.


Author(s):  
Mohammad J. Izadi ◽  
Alireza Falahat

In this investigation an attempt is made to find the best hub to tip ratio, the maximum number of blades, and the best angle of attack of an axial fan with flat blades at a fixed rotational speed for a maximum mass flow rate in a steady and turbulent conditions. In this study the blade angles are varied from 30 to 70 degrees, the hub to tip ratio is varied from 0.2 to 0.4 and the number of blades are varied from 2 to 6 at a fixed hub rotational speed. The results show that, the maximum flow rate is achieved at a blade angle of attack of about 45 degrees for when the number of blades is set equal to 4 at most rotational velocities. The numerical results show that as the hub to tip ratio is decreased, the mass flow rate is increased. For a hub to tip ratio of 0.2, and an angle of attack around 45 degrees with 4 blades, a maximum mass flow rate is achieved.


2016 ◽  
Vol 24 (01) ◽  
pp. 1650002 ◽  
Author(s):  
Andrea Diani ◽  
Luisa Rossetto ◽  
Roberto Dall’Olio ◽  
Daniele De Zen ◽  
Filippo Masetto

Cross flow heat exchangers, when applied to cool data center rooms, use external air (process air) to cool the air stream coming from the data center room (primary air). However, an air–air heat exchanger is not enough to cope with extreme high heat loads in critical conditions (high external temperature). Therefore, water can be sprayed in the process air to increase the heat dissipation capability (wet mode). Water evaporates, and the heat flow rate is transferred to the process air as sensible and latent heat. This paper proposes an analytical approach to predict the behavior of a cross flow heat exchanger in wet mode. The theoretical results are then compared to experimental tests carried out on a real machine in wet mode conditions. Comparisons are given in terms of calculated versus experimental heat flow rate and evaporated water mass flow rate, showing a good match between theoretical and experimental values.


1956 ◽  
Vol 23 (2) ◽  
pp. 269-272
Author(s):  
L. F. Welanetz

Abstract An analysis is made of the suction holding power of a device in which a fluid flows radially outward from a central hole between two parallel circular plates. The holding power and the fluid flow rate are determined as functions of the plate separation. The effect of changing the proportions of the device is investigated. Experiments were made to check the analysis.


2018 ◽  
Vol 72 (2) ◽  
pp. 59-68
Author(s):  
Tijana Urosevic ◽  
Dragan Povrenovic ◽  
Predrag Vukosavljevic ◽  
Ivan Urosevic

In this paper, the influence of operating parameters (transmembrane pressure, temperature, the flow rate of retentate) on the cross - flow microfiltration of synthetic fruit juice and periodic backwashing with air was examined. In the experiments, the Kerasep W5 ceramic membrane with a separation limit of 0.2 ?m was used. The results of experiments in which different transmembrane pressures were used showed that stationary fluxes, at stationary conditions, after 60 minutes, have similar values. So, it can be concluded that the value of the driving force is irrelevant at steady state conditions. However, until the steady state conditions are established, a positive effect of the increase in the driving force is opposed to the negative effect of the increased polarization resistance, as a result of the driving force increase. Thus, the optimal transmembrane pressure was determined amounting to 2 bars. The optimum temperature of the process of clearing the fruit juices by microfiltration is reported as 55?C. Higher temperatures are not used due to a degrading effect on the chemical composition of the juice and a long microfiltration process. With an increase in the temperature of retentate from 22?C to 55?C, the permeate flux increased up to 60%. Increasing the flow rate of retentate reduces the thickness of the formed layer on the surface of the membrane. Due to limitations of the experimental setup and the large surface area of the membrane, the specific velocity of the retentate was low, so that the effects of cross-flow filtration were absent. The use of cross-flow filtration is one of the main requirements for increasing permeate flux, but in the present case it was in overall insufficient, so we have applied periodic air backwashing for improving fruit juice flux during membrane clarification. With this technique, the deposited layer on the membrane is lifted and the permeate flux is maintained at high levels preventing establishment of the steady state in the low flux zone. The time spent for the periodic backwashing was low as compared to the benefits of the increase in the collected permeate quantity. In all experiments with periodic backwashing with air, the collected permeate quantity is higher for up to 72.5 % as compared to experiments without backwashing. By increasing the backwashing duration, the flux increase is up to 5 %, which can be significant for microfiltration at industrial scale. Therefore, this technique is certainly recommended for microfiltration in the production of fruit juices.


Sign in / Sign up

Export Citation Format

Share Document