Investigation of the Structure and the Plasma Parameters in a "Critical Velocity" Rotating Plasma

1976 ◽  
Vol 31 (8) ◽  
pp. 934-941 ◽  
Author(s):  
G. Himmel ◽  
E. Möbius ◽  
A. Piel

AbstractThe structure and the plasma parameters of a rotating plasma showing Alfvén's critical velocity were investigated for the first time by means of Langmuir probes. It was demonstrated that the occurrence of the critical velocity is causally connected with the formation of a spoke structure. The electron temperature and the plasma density were determined with local resolution by which a detailed balance concerning the plasma density and the current transport became possible. The importance of turbulent electron heating for rapid ionization at the critical velocity is emphasized. In this process the modified two-stream-instability obviously plays an outstanding role.

2020 ◽  
Vol 1492 (1) ◽  
pp. 012003
Author(s):  
M Dimitrova ◽  
M Tomes ◽  
Tsv Popov ◽  
R Dejarnac ◽  
J Stockel ◽  
...  

Abstract Langmuir probes are used to study the plasma parameters in the divertor during deuterium gas puff injection on the high- (HFS) or low-field sides (LFS). The probe data were processed to evaluate the plasma potential and the electron temperatures and densities. A difference was found in the plasma parameters depending on the gas puff location. In the case of a gas puff on the LFS, the plasma parameters changed vastly, mainly in the inner divertor – the plasma potential, the ion saturation-current density and the electron temperature dropped. After the gas puff, the electron temperature changed from 10-15 eV down to within the 5-9 eV range. As a result, the parallel heat-flux density decreased. At the same time, in the outer divertor the plasma parameters remained the same. We thus concluded that using a gas puff on the LFS will facilitate reaching a detachment regime by increasing the density of puffed neutrals. When the deuterium gas puff was on the HFS, the plasma parameters in the divertor region remained almost the same before and during the puff. The electron temperature decreased with just few eV as a result of the increased amount of gas in the vacuum chamber.


2021 ◽  
Vol 16 (11) ◽  
pp. T11006
Author(s):  
E.N. Sidorov ◽  
V.I. Batkin ◽  
A.V. Burdakov ◽  
I.A. Ivanov ◽  
K.N. Kuklin ◽  
...  

Abstract A system of four-electrode Langmuir probes developed for the GOL-NB multiple-mirror trap is discussed. The system is used for studies of a low-temperature start plasma (1019–1020 m-3, 5 eV) that fills the device during the initial phase of the experiment. The probe allows simultaneous measurements of plasma density, electron temperature and radial electric field. The accuracy of the probe measurements is also discussed.


2020 ◽  
Vol 75 (7) ◽  
pp. 671-675
Author(s):  
Niti Kant ◽  
Vishal Thakur

AbstractAn analysis of the self-focusing of highly intense chirped pulse laser under exponential plasma density ramp with higher order value of axial electron temperature has been done. Beam width parameter is derived by using paraxial ray approximation and then solved numerically. It is seen that self-focusing of chirped pulse laser is intensely affected by the higher order values of axial electron temperature. Further, influence of exponential plasma density ramp is studied and it is concluded that self-focusing of laser enhances and occurs earlier. On the other hand defocusing of beam reduces to the great extent. It is noticed that the laser spot size reduces significantly under joint influence of the density ramp and the axial electron temperature. Present analysis may be useful for the analysis of quantum dots, the laser induced fusion and etc.


2021 ◽  
Vol 19 (10) ◽  
pp. 01-07
Author(s):  
M.H. Asmaa ◽  
Sami A. Habana

Electron thickness and temperature of laser prompted Iron plasma boundaries, among different boundaries, were estimated. Plasma was delivered through the connection of high pinnacle power Nd: YAG laser at the key frequency of 1064 nm with a pellet target contains a limited quantity of lipstick from nearby business sectors. Lines from Fe II at 238.502 nm, Fe II at 254.904 nm, Fe II at 262.370 nm, Fe II at 286.545 nm and Fe I at 349.779 nm were utilized to assess the plasma boundaries. The current investigation was completed to assess electron temperature (Te), electron thickness (ne), plasma recurrence, Debye length and Debye number (ND). Laser-incited breakdown spectroscopy LIBS method was used for examining and deciding ghastly discharge lines. ID of change lines from all spectra was completed by contrasting ghostly lines and NIST nuclear data set.


Author(s):  
Christopher Wordingham ◽  
Pierre-Yves Taunay ◽  
Edgar Choueiri

Abstract A first-principles approach to obtain the attachment length within a hollow cathode with a constrictive orifice, and its scaling with internal cathode pressure, is developed. This parameter, defined herein as the plasma density decay length scale upstream of (away from) the cathode orifice, is critical because it controls the utilization of the hollow cathode insert and influences cathode life. A two-dimensional framework is developed from the ambipolar diffusion equation for the insert-region plasma. A closed-form solution for the plasma density is obtained using standard partial differential equation techniques by applying an approximate boundary condition at the cathode orifice plane. This approach also yields the attachment length and electron temperature without reliance on measured plasma property data or complex computational models. The predicted plasma density profile is validated against measurements from the NSTAR discharge cathode, and calculated electron temperatures and attachment lengths agree with published values. Nondimensionalization of the governing equations reveals that the solution depends almost exclusively on the neutral pressure-diameter product in the insert plasma region. Evaluation of analytical results over a wide range of input parameters yields scaling relations for the variation of the attachment length and electron temperature with the pressure-diameter product. For the range of orifice-to-insert diameter ratio studied, the influence of orifice size is shown to be small except through its effect on insert pressure, and the attachment length is shown to be proportional to the insert inner radius, suggesting high-pressure cathodes should be constructed with larger-diameter inserts.


2012 ◽  
Vol 12 (3) ◽  
pp. 671-678 ◽  
Author(s):  
S. Sarkar ◽  
S. Choudhary ◽  
A. Sonakia ◽  
A. Vishwakarma ◽  
A. K. Gwal

Abstract. This paper examines the ionospheric anomalies around the time of a strong earthquake (M = 7.0) which occurred in Haiti region (18.457° N, 72.533° W) on 12 January 2010. DEMETER satellite data have been used to study the plasma parameters variation during the Haiti earthquake. One day (11 January 2010) before the earthquake there is a significant enhancement of electron density and electron temperature near the epicenter. Decrease of electron temperature is observed few days after the earthquake. Anomalous plasma parameter variations are detected both in day and nighttimes before the quake. Statistical processing of the DEMETER data demonstrates that satellite data can play an important role for the study of precursory phenomena associated with earthquakes.


2020 ◽  
Vol 493 (4) ◽  
pp. 5761-5772 ◽  
Author(s):  
Takumi Ohmura ◽  
Mami Machida ◽  
Kenji Nakamura ◽  
Yuki Kudoh ◽  
Ryoji Matsumoto

ABSTRACT We present the results of two-temperature magnetohydrodynamic simulations of the propagation of sub-relativistic jets of active galactic nuclei. The dependence of the electron and ion temperature distributions on the fraction of electron heating, fe, at the shock front is studied for fe = 0, 0.05, and 0.2. Numerical results indicate that in sub-relativistic, rarefied jets, the jet plasma crossing the terminal shock forms a hot, two-temperature plasma in which the ion temperature is higher than the electron temperature. The two-temperature plasma expands and forms a backflow referred to as a cocoon, in which the ion temperature remains higher than the electron temperature for longer than 100 Myr. Electrons in the cocoon are continuously heated by ions through Coulomb collisions, and the electron temperature thus remains at Te > 109 K in the cocoon. X-ray emissions from the cocoon are weak because the electron number density is low. Meanwhile, X-rays are emitted from the shocked intracluster medium (ICM) surrounding the cocoon. Mixing of the jet plasma and the shocked ICM through the Kelvin–Helmholtz instability at the interface enhances X-ray emissions around the contact discontinuity between the cocoon and shocked ICM.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1221
Author(s):  
Jun-Hyoung Park ◽  
Ji-Ho Cho ◽  
Jung-Sik Yoon ◽  
Jung-Ho Song

We present a non-invasive approach for monitoring plasma parameters such as the electron temperature and density inside a radio-frequency (RF) plasma nitridation device using optical emission spectroscopy (OES) in conjunction with multivariate data analysis. Instead of relying on a theoretical model of the plasma emission to extract plasma parameters from the OES, an empirical correlation was established on the basis of simultaneous OES and other diagnostics. Additionally, we developed a machine learning (ML)-based virtual metrology model for real-time Te and ne monitoring in plasma nitridation processes using an in situ OES sensor. The results showed that the prediction accuracy of electron density was 97% and that of electron temperature was 90%. This method is especially useful in plasma processing because it provides in-situ and real-time analysis without disturbing the plasma or interfering with the process.


Sign in / Sign up

Export Citation Format

Share Document