Structural Changes in Two Different Types of Oxide Glass Melts: Borates and Metaphosphates

1998 ◽  
Vol 53 (10-11) ◽  
pp. 874-882 ◽  
Author(s):  
G. Herms ◽  
J. Sakowski ◽  
W. Gerike ◽  
Dörte Stachel

Abstract X-ray diffraction experiments of molten oxide glasses, which give new insights into the structure of melts, were carried out. Using modern means (synchrotron radiation, image plates, container-less high-temperature technique) it could be shown that the short range order of melt and solid glass is often qualitatively different. If vitreous B2O3 or binary borate glasses with low content of network modifier are heated up above Tg , the network topology begins to alter. With rising temperature more and more of the boroxol groups are replaced by independent B0 3 groups. While melting a metaphosphate glass, how-ever, structural changes of another kind take place. In solid glass the environment of the network modifier ions is similar to the one found in crystalline modifications, and their distances to the surrounding PO4 tetrahedra have narrow distributions. In the melt, however, these distances scarcely become evident, probably owing to the increased thermal motion of the modifier ions.

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4494
Author(s):  
Xinhai Zhang ◽  
Qiuling Chen ◽  
Shouhua Zhang

In this study, for the first time, diamagnetic 5d0 Ta5+ ions and Ta2O5 nanocrystals were utilized to enhance the structural, mechanical, magnetic, and radiation shielding of heavy metal oxide glasses. Transparent Ta2O5 nanocrystal-doped heavy metal oxide glasses were obtained, and the embedded Ta2O5 nanocrystals had sizes ranging from 20 to 30 nm. The structural analysis of the Ta2O5 nanocrystal displays the transformation from hexagonal to orthorhombic Ta2O5. Structures of doped glasses were studied through X-ray diffraction and infrared and Raman spectra, which reveal that Ta2O5 exists in highly doped glass as TaO6 octahedral units, acting as a network modifier. Ta5+ ions strengthened the network connectivity of 1–5% Ta2O5-doped glasses, but Ta5+ acted as a network modifier in a 10% doped sample and changed the frame coordination units of the glass. All Ta2O5-doped glasses exhibited improved Vicker’s hardness, magnetization (9.53 × 10−6 emu/mol), and radiation shielding behaviors (RPE% = 96–98.8%, MAC = 32.012 cm2/g, MFP = 5.02 cm, HVL = 0.0035–3.322 cm, and Zeff = 30.5) due to the increase in density and polarizability of the Ta2O5 nanocrystals.


1990 ◽  
Vol 216 ◽  
Author(s):  
Zenon BochyŃski

ABSTRACTA new method of X-ray diffraction analysis of structural inhomogeneities in the quartz/Si02/n based inorganic glasses is presented. The method enables the determination of structural changes occuring in the real nodal lattice in the regions of 10…20 Å or more as well as substructural changes in the regions 5…15 Å comparable to the molecular size of SiO2…SiO4. In consequence these changes can be correlated with approximate nodal lattice models of different degree of ordering. The applied method provided the possibility of constructing structural models of nodal lattices describing the surface and inner layers of the real glasses, changes in the local inhomogeneities as well as boundaries in water-gel associates.


1997 ◽  
Vol 12 (9) ◽  
pp. 2274-2280 ◽  
Author(s):  
B. Zhang ◽  
M. Estermann ◽  
W. Steurer

Decaprismatic single crystals taken from a series of alloys of nominal compositions within Al65–77Co3–22Ni3–22 have been studied by means of x-ray diffraction techniques. The substitution of Co by Ni in increasing amounts changes the (pseudo)decagonal diffraction patterns drastically and indicates structural changes which range from a single-crystalline approximant via orientationally ordered nanodomain structures and quasiperiodic phases with different types of ordering phenomena, to a basic decagonal phase. A quantum phase diagram analysis shows a clear separation of the stability regions of the ternary systems described in this study and other decagonal phases.


2015 ◽  
Vol 60 (4) ◽  
pp. 2873-2878
Author(s):  
L. Řeháčková ◽  
S. Rosypalová ◽  
R. Dudek ◽  
M. Ritz ◽  
D. Matýsek ◽  
...  

The effects of the change of chemical composition and temperature on the viscosity of CaO-Al2O3-SiO2 oxide system with basicity from 0.78 to 1.63 were investigated in this paper. Experimental measurements of viscosity were performed with use of the high-temperature viscometer Anton Paar FRS 1600. Viscosity was measured in a rotational mode during heating at the rate of 2.2 K/min in the temperature interval from 1673 to 1873 K. Viscosity is often sensitive to the structural changes in molten oxide systems, which implies that the analysis of viscosity is an effective way to understand the structure of molten oxide systems. Exact clarification of the change of structure of the oxide system caused by increased content of CaO was performed by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray diffraction (XRD).


1988 ◽  
Vol 55 (3) ◽  
pp. 401-412 ◽  
Author(s):  
Alain Lamure ◽  
Jean-François Pommert ◽  
Alain Klaebe ◽  
Colette Lacabanne ◽  
Jean-Jacques Perie

SummarySamples of caseins having different Ca contents as used in cheese processing were analysed by techniques using differential scanning calorimetry and thermally stimulated currents (TSC) before and after treatment with Na poly-phosphate, a food additive used in the manufacture of processed cheese. These techniques revealed structural changes induced by the salt, and the different types of water molecules associated with the protein are evident. This characterization is in agreement with results obtained by other techniques, particularly X-ray diffraction of proteins. Transmission electron microscopy of the same samples confirmed that the changes observed by TSC were associated with an unravelling of the protein.


2018 ◽  
Vol 69 (5) ◽  
pp. 1139-1144
Author(s):  
Iosif Lingvay ◽  
Adriana Mariana Bors ◽  
Livia Carmen Ungureanu ◽  
Valerica Stanoi ◽  
Traian Rus

For the purpose of using three different types of painting materials for the inner protection of the transformer vats, their behavior was studied under actual conditions of operation in the transformer (thermal stress in electro-insulating fluid based on the natural ester in contact with copper for electro-technical use and electro-insulating paper). By comparing determination of the content in furans products (HPLC technique) and gases formed (by gas-chromatography) in the electro-insulating fluid (natural ester with high oleic content) thermally aged at 130 �C to 1000 hours in closed glass vessels, it have been found that the presence the investigated painting materials lead to a change in the mechanism and kinetics of the thermo-oxidation processes. These changes are supported by oxygen dissolved in oil, what leads to decrease both to gases formation CO2, CO, H2, CH4, C2H4 and C2H6) and furans products (5-HMF, 2-FOL, 2 -FAL and 2-ACF). The painting materials investigated during the heat treatment applied did not suffer any remarkable structural changes affecting their functionality in the electro-insulating fluid based on vegetable esters.


2014 ◽  
Vol 28 (2) ◽  
pp. 313-330 ◽  
Author(s):  
R. David Plumlee ◽  
Philip M. J. Reckers

SYNOPSIS: In 2005, an ad hoc committee appointed by the American Accounting Association (AAA) documented a crisis-level shortage of accounting Ph.D.s and recommended significant structural changes to doctoral programs (Kachelmeier, Madeo, Plumlee, Pratt, and Krull 2005). However, subsequent studies show that the shortage continues and the cumulative costs grow (e.g., Fogarty and Holder 2012; Brink, Glasscock, and Wier 2012). The Association to Advance Collegiate Schools of Business (AACSB) recently called for renewed attention to the problem (AACSB 2013b). We contribute to the literature by providing updated information regarding responses by doctoral programs and, from the eyes of potential candidates, of continuing impediments to solving the doctoral shortage. In this paper, we present information gathered through surveys of program administrators and master's and Accounting Doctoral Scholars Program (ADS) students. We explore (1) the cumulative impact of the Ph.D. shortage as of 2013, including its impact on accounting faculty composition, across different types of institutions, (2) negative student perceptions of Ph.D. programs and academic accounting careers, which discourage applicants from pursuing Ph.D. programs, and (3) impediments facing institutions in expanding doctoral programs.


Minerals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 84 ◽  
Author(s):  
Satoru Urakawa ◽  
Toru Inoue ◽  
Takanori Hattori ◽  
Asami Sano-Furukawa ◽  
Shinji Kohara ◽  
...  

The structure of hydrous amorphous SiO2 is fundamental in order to investigate the effects of water on the physicochemical properties of oxide glasses and magma. The hydrous SiO2 glass with 13 wt.% D2O was synthesized under high-pressure and high-temperature conditions and its structure was investigated by small angle X-ray scattering, X-ray diffraction, and neutron diffraction experiments at pressures of up to 10 GPa and room temperature. This hydrous glass is separated into two phases: a major phase rich in SiO2 and a minor phase rich in D2O molecules distributed as small domains with dimensions of less than 100 Å. Medium-range order of the hydrous glass shrinks compared to the anhydrous SiO2 glass by disruption of SiO4 linkage due to the formation of Si–OD deuterioxyl, while the response of its structure to pressure is almost the same as that of the anhydrous SiO2 glass. Most of D2O molecules are in the small domains and hardly penetrate into the void space in the ring consisting of SiO4 tetrahedra.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 290
Author(s):  
Maxim Pyzh ◽  
Kevin Keiler ◽  
Simeon I. Mistakidis ◽  
Peter Schmelcher

We address the interplay of few lattice trapped bosons interacting with an impurity atom in a box potential. For the ground state, a classification is performed based on the fidelity allowing to quantify the susceptibility of the composite system to structural changes due to the intercomponent coupling. We analyze the overall response at the many-body level and contrast it to the single-particle level. By inspecting different entropy measures we capture the degree of entanglement and intraspecies correlations for a wide range of intra- and intercomponent interactions and lattice depths. We also spatially resolve the imprint of the entanglement on the one- and two-body density distributions showcasing that it accelerates the phase separation process or acts against spatial localization for repulsive and attractive intercomponent interactions, respectively. The many-body effects on the tunneling dynamics of the individual components, resulting from their counterflow, are also discussed. The tunneling period of the impurity is very sensitive to the value of the impurity-medium coupling due to its effective dressing by the few-body medium. Our work provides implications for engineering localized structures in correlated impurity settings using species selective optical potentials.


Sign in / Sign up

Export Citation Format

Share Document