Fast Atom Ionization in Strong Electromagnetic Radiation

2018 ◽  
Vol 73 (5) ◽  
pp. 461-466
Author(s):  
M. Apostol

AbstractThe Goeppert–Mayer and Kramers–Henneberger transformations are examined for bound charges placed in electromagnetic radiation in the non-relativistic approximation. The consistent inclusion of the interaction with the radiation field provides the time evolution of the wavefunction with both structural interaction (which ensures the bound state) and electromagnetic interaction. It is shown that in a short time after switching on the high-intensity radiation the bound charges are set free. In these conditions, a statistical criterion is used to estimate the rate of atom ionization. The results correspond to a sudden application of the electromagnetic interaction, in contrast with the well-known ionization probability obtained by quasi-classical tunneling through classically unavailable non-stationary states, or other equivalent methods, where the interaction is introduced adiabatically. For low-intensity radiation the charges oscillate and emit higher-order harmonics, the charge configuration is re-arranged and the process is resumed. Tunneling ionization may appear in these circumstances. Extension of the approach to other applications involving radiation-induced charge emission from bound states is discussed, like ionization of molecules, atomic clusters or proton emission from atomic nuclei. Also, results for a static electric field are included.

2020 ◽  
Vol 35 (23) ◽  
pp. 2050140
Author(s):  
Eduardo López ◽  
Clara Rojas

We solve the one-dimensional time-independent Klein–Gordon equation in the presence of a smooth potential well. The bound state solutions are given in terms of the Whittaker [Formula: see text] function, and the antiparticle bound state is discussed in terms of potential parameters.


2005 ◽  
Vol 14 (06) ◽  
pp. 931-947 ◽  
Author(s):  
F. PILOTTO ◽  
M. DILLIG

We investigate the influence of retardation effects on covariant 3-dimensional wave functions for bound hadrons. Within a quark-(scalar) diquark representation of a baryon, the four-dimensional Bethe–Salpeter equation is solved for a 1-rank separable kernel which simulates Coulombic attraction and confinement. We project the manifestly covariant bound state wave function into three dimensions upon integrating out the non-static energy dependence and compare it with solutions of three-dimensional quasi-potential equations obtained from different kinematical projections on the relative energy variable. We find that for long-range interactions, as characteristic in QCD, retardation effects in bound states are of crucial importance.


1992 ◽  
Vol 07 (09) ◽  
pp. 1935-1951 ◽  
Author(s):  
G.A. KOZLOV

A systematic discussion of the probability of eta and KL bound-state decays—[Formula: see text] and [Formula: see text](l=e, μ)—within a three-dimensional reduction to the two-body quantum field theory is presented. The bound-state vertex function depends on the relative momentum of constituent-like particles. A structure-transition form factor is defined by a confinement-type quark-antiquark wave function. The phenomenology of this kind of decays is analyzed.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3041
Author(s):  
Ren Jie Tuieng ◽  
Sarah H. Cartmell ◽  
Cliona C. Kirwan ◽  
Michael J. Sherratt

Exposure to sub-lethal doses of ionising and non-ionising electromagnetic radiation can impact human health and well-being as a consequence of, for example, the side effects of radiotherapy (therapeutic X-ray exposure) and accelerated skin ageing (chronic exposure to ultraviolet radiation: UVR). Whilst attention has focused primarily on the interaction of electromagnetic radiation with cells and cellular components, radiation-induced damage to long-lived extracellular matrix (ECM) proteins has the potential to profoundly affect tissue structure, composition and function. This review focuses on the current understanding of the biological effects of ionising and non-ionising radiation on the ECM of breast stroma and skin dermis, respectively. Although there is some experimental evidence for radiation-induced damage to ECM proteins, compared with the well-characterised impact of radiation exposure on cell biology, the structural, functional, and ultimately clinical consequences of ECM irradiation remain poorly defined.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Marcel J Tauchert ◽  
Jean-Baptiste Fourmann ◽  
Reinhard Lührmann ◽  
Ralf Ficner

The DEAH-box helicase Prp43 is a key player in pre-mRNA splicing as well as the maturation of rRNAs. The exact modus operandi of Prp43 and of all other spliceosomal DEAH-box RNA helicases is still elusive. Here, we report crystal structures of Prp43 complexes in different functional states and the analysis of structure-based mutants providing insights into the unwinding and loading mechanism of RNAs. The Prp43•ATP-analog•RNA complex shows the localization of the RNA inside a tunnel formed by the two RecA-like and C-terminal domains. In the ATP-bound state this tunnel can be transformed into a groove prone for RNA binding by large rearrangements of the C-terminal domains. Several conformational changes between the ATP- and ADP-bound states explain the coupling of ATP hydrolysis to RNA translocation, mainly mediated by a β-turn of the RecA1 domain containing the newly identified RF motif. This mechanism is clearly different to those of other RNA helicases.


2007 ◽  
Vol 22 (39) ◽  
pp. 2979-2992 ◽  
Author(s):  
JIAO-KAI CHEN ◽  
ZHENG-XIN TANG ◽  
QING-DONG CHEN

The general form of the Bethe–Salpeter wave functions for bound states comprising one scalar constituent and one fermion, or two scalars is presented. Using the reduced Salpeter equation obtained, we can work out the effective nonrelativistic potentials. And one new version of reduced Bethe–Salpeter equation is proposed by extending Gross approximation.


2015 ◽  
Vol 24 (14) ◽  
pp. 1550102 ◽  
Author(s):  
Haryanto M. Siahaan

In this paper, we show the instability of a charged massive scalar field in bound states around Kerr–Sen black holes. By matching the near and far region solutions of the radial part in the corresponding Klein–Gordon equation, one can show that the frequency of bound state scalar fields contains an imaginary component which gives rise to an amplification factor for the fields. Hence, the unstable modes for a charged and massive scalar perturbation in Kerr–Sen background can be shown.


2015 ◽  
Vol 70 (4) ◽  
pp. 245-249 ◽  
Author(s):  
Hassan Hassanabadi ◽  
Antonio Soares de Castro

AbstractWith a general mixing of vector and scalar couplings in a two-dimensional world, a short-range potential is used to explore certain features of the bound states of a spinless particle. Bound-state solutions are found in terms of the Gauss hypergeometric series when the potential parameters obey a certain constraint relation limiting the dosage of a vector coupling. The appearance of the Schiff–Snyder–Weinberg effect for a strong vector coupling and a short-range potential as well as its suppression by the addition of a scalar coupling is discussed.


Anthracene acts as a radical scavenger when present at low concentrations in irradiated hydrocarbons. A study has been made of the effect of radiation intensity and anthracene concentration on G( — A) , the number of anthracene molecules lost per 100 eV of energy absorbed. A theoretical calculation is made of the dependence of G( — A) on radiation intensity 1 and anthracene concentration ( A ), assuming that radiation-induced radicals (R.) are formed at random, and can either disappear by direct combination with one another, or with the anthracene to give RAR or RAAR bridges, or possibly some form of stabilized RA molecules. This theory is in good agreement with the experimental values of G( — A) measured at various low radiation intensities and anthracene concentrations. From the comparison estimates of the reactivity constants are derived. With very high intensity radiation quantitative agreement is less satisfactory, due to the non-steady conditions prevailing in a pulsed beam. The results obtained are compared with previous work on anthracene + hexane and iodine + cyclo hexane mixtures, in which the effect of radiation intensity was not investigated. The results reported here are of interest to the study of reaction kinetics in irradiated organic systems.


Author(s):  
Shamprasad Varija Raghu ◽  
Avinash Kundadka Kudva ◽  
Golgodu Krishnamurthy Rajanikant ◽  
Manjeshwar Shrinath Baliga

Sign in / Sign up

Export Citation Format

Share Document