On the evolution of acceleration discontinuities in van der Waals dusty magnetogasdynamics

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shobhit Kumar Srivastava ◽  
Rahul Kumar Chaturvedi ◽  
Lal Pratap Singh

Abstract The article presents the study of the evolutionary behavior of plane and cylindrically symmetric acceleration discontinuities along the characteristic path under the effect of dust particles in a non-ideal magnetogasdynamic flow. Implications regarding the propagation of disturbances in planar and cylindrically symmetric flows have been shown. Using the characteristics of the governing quasilinear system as a reference coordinate system, we transform the fundamental equations and find the solution. It is explored how the dust particles, along with the nonideal parameter, will influence the steepening or flattening of the propagating waves in magnetic and nonmagnetic cases. The transport equation leading to the evolution of acceleration discontinuities is determined, which provides the relation for the occurrence of shock. The impact of non-idealness of the gas and dust on the evolutionary process of propagating waves for the magnetic and nonmagnetic cases are discussed. The comparison between the flow patterns and distortion of the propagating waves for planar and cylindrically symmetric flows is demonstrated under the various parameter effects.

Author(s):  
X. Zhang ◽  
J. Zhang ◽  
L. Zhang ◽  
J. Liu

<p><strong>Abstract.</strong> In the working of the existing reference coordinate system transformed into the coordinate system of the geocentric coordinate system, many experts and scholars have in-depth research on the transformation methods such as geodetic control point results (including GNSS base station coordinates, GNSS control point coordinates, triangle point coordinates), basic geographic information data results (including DLG, DOM, DEM, DRG, DSM, etc.) and other spatial information data. On the basis of these studies, many provinces and cities have completed the coordinate system transformation of surveying and mapping results in China. This paper expounds the method of transforming the existing reference coordinate system into the geocentric coordinate system, summarizes and sorts out the common quality problems in the process of different data and different methods, and analyses the causes of the problems and the impact on the transforming results. Based on the above work, The paper provides reference and suggestions for the transforming work, which is aimed to improve the transformation quality in the future.</p>


1975 ◽  
Vol 26 ◽  
pp. 21-26

An ideal definition of a reference coordinate system should meet the following general requirements:1. It should be as conceptually simple as possible, so its philosophy is well understood by the users.2. It should imply as few physical assumptions as possible. Wherever they are necessary, such assumptions should be of a very general character and, in particular, they should not be dependent upon astronomical and geophysical detailed theories.3. It should suggest a materialization that is dynamically stable and is accessible to observations with the required accuracy.


1985 ◽  
Vol 17 (9) ◽  
pp. 1-12 ◽  
Author(s):  
Carl G. Enfield

Relatively immobile chemicals have been observed moving significantly faster than anticipated from hydrophobic theory. A theory is developed considering transport in three mobile fluid phases which can be used to describe this facilitated transport. The convective dispersive transport equation is solved utilizing a transformation of variables which permits utilizing existing solutions covering a wide variety of boundary conditions. The impact of the facilitated transport is demonstrated for one case where the soils organic carbon is 10%. If 2% of the fluid phase is an organic fraction, the theory developed projects that hydrophobic theory may underestimate mobility by more than 100 times. At concentrations of dissolved organic carbon normally observed in nature (5 - 10 mg/l), a measurable increased mobility is anticipated for the very immobile compounds like dioxins.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 125
Author(s):  
Mariola Jabłońska ◽  
Janusz Janeczek ◽  
Beata Smieja-Król

For the first time, it is shown that inhaled ambient air-dust particles settled in the human lower respiratory tract induce lung calcification. Chemical and mineral compositions of pulmonary calcium precipitates in the lung right lower-lobe (RLL) tissues of 12 individuals who lived in the Upper Silesia conurbation in Poland and who had died from causes not related to a lung disorder were determined by transmission and scanning electron microscopy. Whereas calcium salts in lungs are usually reported as phosphates, calcium salts precipitated in the studied RLL tissue were almost exclusively carbonates, specifically Mg-calcite and calcite. These constituted 37% of the 1652 mineral particles examined. Mg-calcite predominated in the submicrometer size range, with a MgCO3 content up to 50 mol %. Magnesium plays a significant role in lung mineralization, a fact so far overlooked. The calcium phosphate (hydroxyapatite) content in the studied RLL tissue was negligible. The predominance of carbonates is explained by the increased CO2 fugacity in the RLL. Carbonates enveloped inhaled mineral-dust particles, including uranium-bearing oxides, quartz, aluminosilicates, and metal sulfides. Three possible pathways for the carbonates precipitation on the dust particles are postulated: (1) precipitation of amorphous calcium carbonate (ACC), followed by its transformation to calcite; (2) precipitation of Mg-ACC, followed by its transformation to Mg-calcite; (3) precipitation of Mg-free ACC, causing a localized relative enrichment in Mg ions and subsequent heterogeneous nucleation and crystal growth of Mg-calcite. The actual number of inhaled dust particles may be significantly greater than was observed because of the masking effect of the carbonate coatings. There is no simple correlation between smoking habit and lung calcification.


2021 ◽  
Vol 11 (15) ◽  
pp. 6874
Author(s):  
Miroslava Vandličkova ◽  
Iveta Markova ◽  
Katarina Holla ◽  
Stanislava Gašpercová

The paper deals with the selected characteristics, such as moisture, average bulk density, and fraction size, of tropical marblewood dust (Marmaroxylon racemosum) that influence its ignition risk. Research was focused on sieve analysis, granulometric analysis, measurement of moisture level in the dust, and determination of the minimum ignition temperatures of airborne tropical dust and dust layers. Samples were prepared using a Makita 9556CR 1400W grinder and K36 sandpaper for the purpose of selecting the percentages of the various fractions (<63, 63, 71, 100, 200, 315, 500 μm). The samples were sized on an automatic vibratory sieve machine Retsch AS 200. More than 65% of the particles were determined to be under 100 μm. The focus was on microfractions of tropical wood dust (particles with a diameter of ≤100 µm) and on the impact assessment of particle size (particle size <100 µm) on the minimum ignition temperatures of airborne tropical dust and dust layers. The minimum ignition temperature of airborne marblewood dust decreased with the particle size to the level of 400 °C (particle size 63 μm).


2010 ◽  
Vol 67 (8) ◽  
pp. 2537-2546 ◽  
Author(s):  
John F. Scinocca ◽  
Bruce R. Sutherland

Abstract A new effect related to the evaluation of momentum deposition in conventional parameterizations of orographic gravity wave drag (GWD) is considered. The effect takes the form of an adjustment to the basic-state wind about which steady-state wave solutions are constructed. The adjustment is conservative and follows from wave–mean flow theory associated with wave transience at the leading edge of the wave train, which sets up the steady solution assumed in such parameterizations. This has been referred to as “self-acceleration” and it is shown to induce a systematic lowering of the elevation of momentum deposition, which depends quadratically on the amplitude of the wave. An expression for the leading-order impact of self-acceleration is derived in terms of a reduction of the critical inverse Froude number Fc, which determines the onset of wave breaking for upwardly propagating waves in orographic GWD schemes. In such schemes Fc is a central tuning parameter and typical values are generally smaller than anticipated from conventional wave theory. Here it is suggested that self-acceleration may provide some of the explanation for why such small values of Fc are required. The impact of Fc on present-day climate is illustrated by simulations of the Canadian Middle Atmosphere Model.


2019 ◽  
Vol 12 (3) ◽  
pp. 1673-1683 ◽  
Author(s):  
Ove Havnes ◽  
Tarjei Antonsen ◽  
Gerd Baumgarten ◽  
Thomas W. Hartquist ◽  
Alexander Biebricher ◽  
...  

Abstract. We present a new method of analyzing measurements of mesospheric dust made with DUSTY rocket-borne Faraday cup probes. It can yield the variation in fundamental dust parameters through a mesospheric cloud with an altitude resolution down to 10 cm or less if plasma probes give the plasma density variations with similar height resolution. A DUSTY probe was the first probe that unambiguously detected charged dust and aerosol particles in the Earth's mesosphere. DUSTY excluded the ambient plasma by various biased grids, which however allowed dust particles with radii above a few nanometers to enter, and it measured the flux of charged dust particles. The flux measurements directly yielded the total ambient dust charge density. We extend the analysis of DUSTY data by using the impact currents on its main grid and the bottom plate as before, together with a dust charging model and a secondary charge production model, to allow the determination of fundamental parameters, such as dust radius, charge number, and total dust density. We demonstrate the utility of the new analysis technique by considering observations made with the DUSTY probes during the MAXIDUSTY rocket campaign in June–July 2016 and comparing the results with those of other instruments (lidar and photometer) also used in the campaign. In the present version we have used monodisperse dust size distributions.


2013 ◽  
Vol 79 (4) ◽  
pp. 405-411 ◽  
Author(s):  
SERGEY I. POPEL ◽  
LEV M. ZELENYI

AbstractFrom the Apollo era of exploration, it was discovered that sunlight was scattered at the terminators giving rise to “horizon glow” and “streamers” above the lunar surface. Subsequent investigations have shown that the sunlight was most likely scattered by electrostatically charged dust grains originating from the surface. A renaissance is being observed currently in investigations of the Moon. The Luna-Glob and Luna-Resource missions (the latter jointly with India) are being prepared in Russia. Some of these missions will include investigations of lunar dust. Here we discuss the future experimental investigations of lunar dust within the missions of Luna-Glob and Luna-Resource. We consider the dusty plasma system over the lunar surface and determine the maximum height of dust rise. We describe mechanisms of formation of the dusty plasma system over the Moon and its main properties, determine distributions of electrons and dust over the lunar surface, and show a possibility of rising dust particles over the surface of the illuminated part of the Moon in the entire range of lunar latitudes. Finally, we discuss the effect of condensation of micrometeoriod substance during the expansion of the impact plume and show that this effect is important from the viewpoint of explanation of dust particle rise to high altitudes in addition to the dusty plasma effects.


2021 ◽  
Author(s):  
Jiří Pavlů ◽  
Samuel Kočiščák ◽  
Åshild Fredriksen ◽  
Michael DeLuca ◽  
Zoltan Sternovsky

&lt;p&gt;We experimentally observe both positive and negative charge carriers in impact plasma and estimate their effective temperatures. The measurements are carried on a dust accelerator using polypyrrole (PPy)-coated olivine dust particles impacting tungsten (W) target in the velocity range of 2&amp;#8211;18 km/s. We measure the retained impact charge as a function of applied bias potential to the control grid. The temperatures are estimated from the data fit. The estimated effective temperatures of the positive ions are approximately 7&amp;#160;eV and seems to be independent of the impact speed. The negative charge carriers' temperatures vary from as low as 1 eV for the lowest speeds to almost ten times higher speeds. The presented values differ significantly from previous studies using Fe dust particles. Yet, the discrepancy can be attributed to a larger fraction of negative ions in the impact plasma that likely originates from the PPy coating.&lt;/p&gt;


Author(s):  
K.M. Moiseeva ◽  
◽  
A.Yu. Krainov ◽  
E.I. Rozhkova ◽  
◽  
...  

Swirling combustion is currently one of the most important engineering problems in physics of combustion. There is a hypothesis on the increase in the combustion efficiency of reacting gas mixtures in combustion chambers with swirling flows, as well as on the increase in the efficiency of fuel combustion devices. In this paper, it is proposed to simulate a swirling flow by taking into account the angular component of the flow velocity. The aim of the study is to determine the effect of the angular component of the flow velocity on the characteristics of the flow and combustion of an air suspension of coal dust in a pipe. The problem is solved in a twodimensional axisymmetric approximation with allowance for a swirling flow. A physical and mathematical model is based on the approaches of the mechanics of multiphase reacting media. A solution method involves the arbitrary discontinuity decay algorithm. The impact of the flow swirl and the size of coal dust particles on the gas temperature distribution along the pipe is determined.


Sign in / Sign up

Export Citation Format

Share Document