Enzymatisch isolierte Cellulose-Fibrillen der Valonia-Zellwand

1968 ◽  
Vol 23 (2) ◽  
pp. 272-274 ◽  
Author(s):  
Werner W. Franke ◽  
Heinz Falk

Cellulose microfibrils from the cell wall of the green alga Valonia macrophysa were isolated by enzymatical digestion of the wall matrix and examined in the electron microscope using the negative staining technique. The smallest fibrils obtained after prolonged treatment were found to be flat ribbons with a width about 10—20 nm and a height of 3 to 4 nm. This result is discussed in relation to Frey- Wyssling's concept of an “elementary fibril“ with a cross-section of 3.5 × 3.5 nm. Some alternation of unstained areas along the fibrils was observed. This was interpreted as artificially induced rather than relating to the structure and the arrangement of the cellulose chain molecules.

Author(s):  
L. V. Leak

Electron microscopic observations of freeze-fracture replicas of Anabaena cells obtained by the procedures described by Bullivant and Ames (J. Cell Biol., 1966) indicate that the frozen cells are fractured in many different planes. This fracturing or cleaving along various planes allows one to gain a three dimensional relation of the cellular components as a result of such a manipulation. When replicas that are obtained by the freeze-fracture method are observed in the electron microscope, cross fractures of the cell wall and membranes that comprise the photosynthetic lamellae are apparent as demonstrated in Figures 1 & 2.A large portion of the Anabaena cell is composed of undulating layers of cytoplasm that are bounded by unit membranes that comprise the photosynthetic membranes. The adjoining layers of cytoplasm are closely apposed to each other to form the photosynthetic lamellae. Occassionally the adjacent layers of cytoplasm are separated by an interspace that may vary in widths of up to several 100 mu to form intralamellar vesicles.


Author(s):  
Manfred E. Bayer

Bacterial viruses adsorb specifically to receptors on the host cell surface. Although the chemical composition of some of the cell wall receptors for bacteriophages of the T-series has been described and the number of receptor sites has been estimated to be 150 to 300 per E. coli cell, the localization of the sites on the bacterial wall has been unknown.When logarithmically growing cells of E. coli are transferred into a medium containing 20% sucrose, the cells plasmolize: the protoplast shrinks and becomes separated from the somewhat rigid cell wall. When these cells are fixed in 8% Formaldehyde, post-fixed in OsO4/uranyl acetate, embedded in Vestopal W, then cut in an ultramicrotome and observed with the electron microscope, the separation of protoplast and wall becomes clearly visible, (Fig. 1, 2). At a number of locations however, the protoplasmic membrane adheres to the wall even under the considerable pull of the shrinking protoplast. Thus numerous connecting bridges are maintained between protoplast and cell wall. Estimations of the total number of such wall/membrane associations yield a number of about 300 per cell.


Author(s):  
Werner J. Niklowitz

After intoxication of rabbits with certain substances such as convulsant agents (3-acetylpyridine), centrally acting drugs (reserpine), or toxic metal compounds (tetraethyl lead) a significant observation by phase microscope is the loss of contrast of the hippocampal mossy fiber layer. It has been suggested that this alteration, as well as changes seen with the electron microscope in the hippocampal mossy fiber boutons, may be related to a loss of neurotransmitters. The purpose of these experiments was to apply the OsO4-zinc-iodide staining technique to the study of these structural changes since it has been suggested that OsO4-zinc-iodide stain reacts with neurotransmitters (acetylcholine, catecholamines).Domestic New Zealand rabbits (2.5 to 3 kg) were used. Hippocampal tissue was removed from normal and experimental animals treated with 3-acetylpyridine (antimetabolite of nicotinamide), reserpine (anti- hypertensive/tranquilizer), or iproniazid (antidepressant/monamine oxidase inhibitor). After fixation in glutaraldehyde hippocampal tissue was treated with OsO4-zinc-iodide stain and further processed for phase and electron microscope studies.


Author(s):  
H. J. Bender ◽  
R. A. Donaton

Abstract The characteristics of an organic low-k dielectric during investigation by focused ion beam (FIB) are discussed for the different FIB application modes: cross-section imaging, specimen preparation for transmission electron microscopy, and via milling for device modification. It is shown that the material is more stable under the ion beam than under the electron beam in the scanning electron microscope (SEM) or in the transmission electron microscope (TEM). The milling of the material by H2O vapor assistance is strongly enhanced. Also by applying XeF2 etching an enhanced milling rate can be obtained so that both the polymer layer and the intermediate oxides can be etched in a single step.


1986 ◽  
Vol 64 (4) ◽  
pp. 875-884 ◽  
Author(s):  
Patricia Schulz ◽  
William A. Jensen

Ovules of Capsella bursa-pastoris at the dyad and tetrad stages of meiosis and at the megaspore and two-nucleate stages of the gametophyte were studied with the electron microscope. The cells of the dyad and tetrad are separated by aniline blue fluorescent cross walls and receive all types of organelles and autophagic vacuoles that were present in the meiocyte. Autophagic vacuoles enclose ribosomes and organelles and show reaction product for acid phosphatase. Autophagic vacuoles and some plastids are absorbed into the enlarging vacuoles of the growing megaspore. Other plastids appear to survive meiosis and there is no evidence for their de novo origin. Some mitochondria appear to degenerate in the enlarging megaspore but others look healthy and there is no evidence for the de novo origin of mitochondria. The nucleolus of the developing megaspore becomes very large and the cytoplasm is extremely dense with ribosomes. The cell wall is thickened by an electron-translucent, periodic acid – Schiff negative, aniline blue fluorescent material and contains plasmodesmata that link the megaspore with the nucellus. The plasmalemma of the growing megaspore produces microvilluslike extensions into this wall that disappear with the formation of the two-nucleate gametophyte. Plasmodesmata disappear from the cell wall at the four-nucleate stage.


1972 ◽  
Vol 18 (1) ◽  
pp. 93-96 ◽  
Author(s):  
S. E. Read ◽  
R. W. Reed

The replicative events of a virulent phage (A25) infection of a group A Streptococcus (T253) were studied using the electron microscope. The first intracellular evidence of phage replication in a cell occurred 30 min after infection with arrest of cell division and increase in the nucleic acid pool. Phage heads were evident in the nucleic acid pool of the cells 45 min after infection. Release of phages occurred by splitting of the cell wall along discrete lines. This appeared to be at sites of active wall synthesis, i.e., near the region of septum formation. Many phage components were released but relatively few complete phages indicating a relatively inefficient replicative system.


1970 ◽  
Vol 6 (2) ◽  
pp. 299-321
Author(s):  
K. ROBERTS ◽  
D. H. NORTHCOTE

Sycamore suspension callus cells have been partially synchronized to give a culture with a mitotic index of 15%. Living dividing cells of the culture have been examined with Nomarski differential interference optics and a comparable study made on fixed cells with the electron microscope. An organized band of reticulate cytoplasm partially encircles the nucleus at mitosis. The cell divides by the formation of a phragmosome which grows across the large vacuole; this allows the organization of the cytoplasm which forms the cell plate to be examined separately from the more general cytoplasm of the cell. The cell plate grows from one side of the cell to the other and down its length a complete developmental sequence can be seen. The Golgi bodies and the endoplasmic reticulum are probably involved in the formation of material for the construction of the cell plate and young cell wall. Microfibrils are formed within the plate in the more mature regions, while material contained within vesicles is incorporated at the young growing edge. At the edge of the plate microtubules are found and these correspond to the fibrillar appearance of the phragmoplast seen with the optical microscope. In the living cell an active movement of organelles along the peripheral cytoplasm can be seen and with fixed cells viewed with the electron microscope microtubules are often found adjacent to the plasmalemma and lying close to mitochondria, crystal-containing bodies and plastids. The appearance of crystal-containing bodies and plastids containing phytoferritin is described.


1957 ◽  
Vol 3 (2) ◽  
pp. 171-182 ◽  
Author(s):  
S. T. Bayley ◽  
J. R. Colvin ◽  
F. P. Cooper ◽  
Cecily A. Martin-Smith

The primary walls of epidermal cells in Avena coleoptiles ranging in length from 2 to 40 mm. have been studied in the electron and polarizing microscopes and by the low-angle scattering of x-rays. The outer walls of these cells are composed of multiple layers of cellulose microfibrils oriented longitudinally; initially the number of layers is between 10 and 15 but this increases to about 25 in older tissue. Where epidermal cells touch, these multiple layers fuse gradually into a primary wall of the normal type between cells. In these radial walls, the microfibrils are oriented transversely. Possible mechanisms for the growth of the multilayered outer wall during cell elongation are discussed.


1959 ◽  
Vol 5 (3) ◽  
pp. 501-506 ◽  
Author(s):  
W. Gordon Whaley ◽  
Hilton H. Mollenhauer ◽  
Joyce E. Kephart

Maize root tips were fixed in potassium permanganate, embedded in epoxy resin, sectioned to show silver interference color, and studied with the electron microscope. All the cells were seen to contain an endoplasmic reticulum and apparently independent Golgi structures. The endoplasmic reticulum is demonstrated as a membrane-bounded, vesicular structure comparable in many aspects to that of several types of animal cells. With the treatment used here the membranes appear smooth surfaced. The endoplasmic reticulum is continuous with the nuclear envelope and, by contact at least, with structures passing through the cell wall. The nuclear envelope is characterized by discontinuities, as previously reported for animal cells. The reticula of adjacent cells seem to be in contact at or through the plasmodesmata. Because of these contacts the endoplasmic reticulum of a given cell appears to be part of an intercellular system. The Golgi structures appear as stacks of platelet-vesicles which apparently may, under certain conditions, produce small vesicles around their edges. Their form changes markedly with development of the cell.


Sign in / Sign up

Export Citation Format

Share Document