High Pressure and Chemical Bonding in Materials Chemistry

2006 ◽  
Vol 61 (7) ◽  
pp. 799-807 ◽  
Author(s):  
Gérard Demazeau

Materials chemistry under high pressures is an important research area opening new routes for stabilizing novel materials or original structures with different compositions (oxides, oxoborates, nitrides, nitridophosphates, sulfides,. . .).Due to the varieties of chemical compositions and structures involved, high pressure technology is also an important tool for improving the investigations on chemical bonding and consequently the induced physico-chemical properties.Two different approaches can be described: (i) the chemical bond is pre-existing and in such a case, high pressures lead to structural transformations, (ii) the chemical bond does not exist and high pressures are able to help the synthesis of novel materials. In both cases the condensation effect (ΔV < 0 between precursors and the final product) is the general rule. In addition, through the improvement of the reactivity, high pressures can lead to materials that are not reachable through other chemical routes.

2006 ◽  
Vol 61 (12) ◽  
pp. 1457-1470 ◽  
Author(s):  
Gérard Demazeau ◽  
Hubert Huppertz ◽  
José A. Alonso ◽  
Rainer Pöttgen ◽  
Emilio Moran ◽  
...  

Among the thermodynamic parameters governing the preparation of novel materials, temperature (T) and pressure (p) play an important role. In Materials Chemistry, the synthesis of materials needs energy in order to enhance the diffusion of atoms to the equilibrium positions required by the specific structure and to induce the formation of chemical bonds. The comparison of the energy conveyed by both parameters (p and T) underlines that high pressures can be associated - in liquid or solid media - with soft processes. Consequently this paper describes the main factors induced by the parameter pressure that are able to support new structural forms or generate novel materials. Two different approaches are presented: (i) for a given composition with characteristic chemical bonds, high pressures can induce structural transformations, (ii) high pressures lead to the formation of novel materials from different precursors through the formation of new chemical bonds.


2021 ◽  
Vol 23 (7) ◽  
pp. 4277-4286
Author(s):  
S. V. Chuvikov ◽  
E. A. Berdonosova ◽  
A. Krautsou ◽  
J. V. Kostina ◽  
V. V. Minin ◽  
...  

Pt-Catalyst plays a key role in hydrogen adsorption by Cu-BTC at high pressures.


Author(s):  
Kun Li ◽  
Junjie Wang ◽  
Vladislav A. Blatov ◽  
Yutong Gong ◽  
Naoto Umezawa ◽  
...  

AbstractAlthough tin monoxide (SnO) is an interesting compound due to its p-type conductivity, a widespread application of SnO has been limited by its narrow band gap of 0.7 eV. In this work, we theoretically investigate the structural and electronic properties of several SnO phases under high pressures through employing van der Waals (vdW) functionals. Our calculations reveal that a metastable SnO (β-SnO), which possesses space group P21/c and a wide band gap of 1.9 eV, is more stable than α-SnO at pressures higher than 80 GPa. Moreover, a stable (space group P2/c) and a metastable (space group Pnma) phases of SnO appear at pressures higher than 120 GPa. Energy and topological analyses show that P2/c-SnO has a high possibility to directly transform to β-SnO at around 120 GPa. Our work also reveals that β-SnO is a necessary intermediate state between high-pressure phase Pnma-SnO and low-pressure phase α-SnO for the phase transition path Pnma-SnO →β-SnO → α-SnO. Two phase transition analyses indicate that there is a high possibility to synthesize β-SnO under high-pressure conditions and have it remain stable under normal pressure. Finally, our study reveals that the conductive property of β-SnO can be engineered in a low-pressure range (0–9 GPa) through a semiconductor-to-metal transition, while maintaining transparency in the visible light range.


2020 ◽  
Author(s):  
Kenji Ohta ◽  
Kei Hirose

Abstract Precise determinations of the thermal conductivity of iron alloys at high pressures and temperatures are essential for understanding the thermal history and dynamics of the metallic cores of the Earth. We review relevant high-pressure experiments using a diamond-anvil cell and discuss implications of high core conductivity for its thermal and compositional evolution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qinghong Zeng ◽  
Shengbo Chen ◽  
Yuanzhi Zhang ◽  
Yongling Mu ◽  
Rui Dai ◽  
...  

AbstractWe report on the mineralogical and chemical properties of materials investigated by the lunar rover Yutu-2, which landed on the Von Kármán crater in the pre-Nectarian South Pole–Aitken (SPA) basin. Yutu-2 carried several scientific payloads, including the Visible and Near-infrared Imaging Spectrometer (VNIS), which is used for mineral identification, offering insights into lunar evolution. We used 86 valid VNIS data for 21 lunar days, with mineral abundance obtained using the Hapke radiative transfer model and sparse unmixing algorithm and chemical compositions empirically estimated. The mineralogical properties of the materials at the Chang’E-4 (CE-4) site referred to as norite/gabbro, based on findings of mineral abundance, indicate that they may be SPA impact melt components excavated by a surrounding impact crater. We find that CE-4 materials are dominated by plagioclase and pyroxene and feature little olivine, with 50 of 86 observations showing higher LCP than HCP in pyroxene. In view of the effects of space weathering, olivine content may be underestimated, with FeO and TiO2 content estimated using the maturity-corrected method. Estimates of chemical content are 7.42–18.82 wt% FeO and 1.48–2.1 wt% TiO2, with a low-medium Mg number (Mg # ~ 55). Olivine-rich materials are not present at the CE-4 landing site, based on the low-medium Mg #. Multi-origin materials at the CE-4 landing site were analyzed with regard to concentrations of FeO and TiO2 content, supporting our conclusion that the materials at CE-4 do not have a single source but rather are likely a mixture of SPA impact melt components excavated by surrounding impact crater and volcanic product ejecta.


SPE Journal ◽  
2019 ◽  
Vol 24 (06) ◽  
pp. 2504-2525 ◽  
Author(s):  
Jing Li ◽  
Keliu Wu ◽  
Zhangxin Chen ◽  
Kun Wang ◽  
Jia Luo ◽  
...  

Summary An excess adsorption amount obtained in experiments is always determined by mass balance with a void volume measured by helium (He) –expansion tests. However, He, with a small kinetic diameter, can penetrate into narrow pores in porous media that are inaccessible to adsorbate gases [e.g., methane (CH4)]. Thus, the actual accessible volume for a specific adsorbate is always overestimated by an He–based void volume; such overestimation directly leads to errors in the determination of excess isotherms in the laboratory, such as “negative isotherms” for gas adsorption at high pressures, which further affects an accurate description of total gas in place (GIP) for shale–gas reservoirs. In this work, the mass balance for determining the adsorbed amount is rewritten, and two particular concepts, an “apparent excess adsorption” and an “actual excess adsorption,” are considered. Apparent adsorption is directly determined by an He–based volume, corresponding to the traditional treatment in experimental conditions, whereas actual adsorption is determined by an adsorbate–accessible volume, where pore–wall potential is always nonpositive (i.e., an attractive molecule/pore–wall interaction). Results show the following: The apparent excess isotherm determined by the He–based volume gradually becomes negative at high pressures, but the actual one determined by the adsorbate–accessible volume always remains positive.The negative adsorption phenomenon in the apparent excess isotherm is a result of the overestimation in the adsorbate–accessible volume, and a larger overestimation leads to an earlier appearance of this negative adsorption.The positive amount in the actual excess isotherm indicates that the adsorbed phase is always denser than the bulk gas because of the molecule/pore–wall attraction aiding the compression of the adsorbed molecules. Practically, an overestimation in pore volume (PV) is only 3.74% for our studied sample, but it leads to an underestimation reaching up to 22.1% in the actual excess amount at geologic conditions (i.e., approximately 47 MPa and approximately 384 K). Such an overestimation in PV also underestimates the proportions of the adsorbed–gas amount to the free–gas amount and to the total GIP. Therefore, our present work underlines the importance of a void volume in the determination of adsorption isotherms; moreover, we establish a path for a more–accurate evaluation of gas storage in geologic shale reservoirs with high pressure.


2011 ◽  
Vol 382 ◽  
pp. 372-374
Author(s):  
Yong Jiang ◽  
Zhi Bin Jiang ◽  
Guo Jie Shao ◽  
Dong Cheng Guo ◽  
Yu Tian ◽  
...  

Purpose: The purpose of this study was to study the compositions of the polygonaceae medicinal plants called rumex root. Methods: Solvent method and chromatography was used to purificate the chemical compositions of Rumex, and the molecular structure of the compound was identified by physical and chemical properties and spectral data. Results: Two compounds were obtained from the ethanol extract of rumex root, which were identified as Chrysophanol and Physcione. Conclusions: Experimental basis was provided for the further study of the active ingredients of rumex root and the development and utilization of medical resources.


During the researches upon high-pressure explosions of carbonic oxide-air, hydrogen-air, etc., mixtures, which have been described in the previous papers of this series, a mass of data has been accumulated relating to the influence of density and temperature upon the internal energy of gases and the dissociation of steam and carbon dioxide. Some time ago, at Prof. Bone’s request, the author undertook a systematic survey of the data in question, and the present paper summarises some of the principal results thereof, which it is hoped will throw light upon problems interesting alike to chemists, physicists and internal-combustion engineers. The explosion method affords the only means known at present of determining the internal energies of gases at very high temperatures, and it has been used for this purpose for upwards of 50 years. Although by no means without difficulties, arising from uncertainties of some of the assumptions upon which it is based, yet, for want of a better, its results have been generally accepted as being at least provisionally valuable. Amongst the more recent investigations which have attracted attention in this connection should be mentioned those of Pier, Bjerrum, Siegel and Fenning, all of whom worked at low or medium pressures.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2076
Author(s):  
Chuanjun Suo ◽  
Pan Ma ◽  
Yandong Jia ◽  
Xiao Liu ◽  
Xuerong Shi ◽  
...  

Extruded Al-Zn-Mg-Cu alloy samples with grains aligned parallel to the extrusion direction were subjected to high-pressure annealing. The effects of annealing pressure on the microstructure, hardness, and corrosion properties (evaluated using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS)) were investigated. Phase analysis showed the presence of MgZn2 and α-Al phases, the MgZn2 phase dissolved into the matrix, and its amount decreased with the increasing annealing pressure. The recrystallization was inhibited, and the grains were refined, leading to an increase in the Vickers hardness with increasing the annealing pressure. The corrosion resistance was improved after high-pressure treatment, and a stable passivation layer was observed. Meanwhile, the number of corrosion pits and the width of corrosion cracks decreased in the high-pressure annealed samples.


Sign in / Sign up

Export Citation Format

Share Document