“Covalent Magnetism” and Invar-like Behavior within Ternary Nitrides: An ab initio Study

2007 ◽  
Vol 62 (7) ◽  
pp. 881-890 ◽  
Author(s):  
Samir F. Matar ◽  
Abdesalem Houari ◽  
Mohamed A. Belkhir ◽  
Mirvat Zakhour

Abstract Magnetic properties and bonding analyses of perovskite structure-derived TFe3N (T = Ru, Os) nitrides have been investigated within density functional theory using both pseudo potential and all electron methods. At equilibrium, spin degenerate non-magnetic (NM) and ferromagnetic (FM) calculations of energy versus volume show that the ground state of the two compounds is ferromagnetic. Magnetic moments of Ru/Os and Fe, respectively, being situated at two different crystallographic sites are studied over a wide range of the cubic lattice parameter. The volume expansion indicates that iron atoms show itinerant magnetism while Ru and Os exhibit a localized behavior. Important magnetovolume effects are observed, with saturation of the magnetic moment reached in RuFe3N but not in OsFe3N. The electronic structure is visualized for the different binding characters Fe-N versus Ru/Os-N with the help of electron localization plots. The density of states of the ferromagnetic ground state is interpreted on the basis of a covalent magnetic model which goes beyond the Stoner rigid band model. An Invar-like behavior is predicted for the two nitrides.

2017 ◽  
Vol 56 (3) ◽  
Author(s):  
Faustino Aguilera-Granja ◽  
Andrés Vega ◽  
Luis Carlos Balbás

In a recent beam deflecting experiment was found that high and low spin states of pure Fe<sub>n</sub> and Co<sub>n</sub> clusters with <em>n</em> ≤ 300 atoms coexist at cryogenic temperatures. In this work we have studied the high spin (HS) and low spin (LS) states of several structural isomers of Co<sub>23</sub>, Co<sub>34</sub>, Fe<sub>34</sub>, and Fe<sub>40</sub> using the generalized gradient approximation (GGA) to density functional theory as implemented in the first-principles pseudo-potential code SIESTA. The calculated energy difference between these HS and LS isomers is not consistent with the observed coexistence, which can be due to an insufficient account of many body correlation effects in the GGA description, or to unknown isomer structures of these clusters. We have calculated within the same tools the magnetic isomers of Co<sub>12</sub>Cu cluster aimed to re-visit a former DFT prediction of an anti-ferromagnetic ground state. We find, however, a ferromagnetic ground state as expected on physical grounds. Our results exemplify the difficulties of the current DFT approaches to describe the magnetic properties of transition metal systems.


2011 ◽  
Vol 22 (04) ◽  
pp. 359-369
Author(s):  
M. SAMAH ◽  
B. MOULA

The lowest-energy geometric and isomers of freestanding Co n clusters (n = 2 - 10) and their corresponding magnetic moments have been studied using the Siesta code based on pseudopotential density-functional theory. The calculated results show that there are many isomers near the ground state. Different isomers hold different magnetic moment. The stability study shows that among the investigated clusters, the hexamer one is the most stable and is the magic cluster. Dissociation channels energy are also studied.


2018 ◽  
Vol 185 ◽  
pp. 05012
Author(s):  
Yulia Sokolovskaya ◽  
Mikhail Zagrebin ◽  
Vasiliy Buchelnikov ◽  
Alexey Zayak

In this work we perform a wide-range systematic study of the family off-stoichiometric Ni-Mn-Ga alloys by using the supercell approach in the framework of density functional theory. Our goal is to explore the compositional variations of the structural stability and magnetic properties of Ni-Mn-Ga compositions. As a result equilibrium lattice parameters, bulk moduli, total magnetic moments, and formation energies of a wide range of Heusler alloys have been mapped on compositional ternary diagrams.


2016 ◽  
Vol 24 (04) ◽  
pp. 1750049 ◽  
Author(s):  
JUN ZHU ◽  
XIU-RONG ZHANG ◽  
PEI-YING HUO ◽  
ZHI-CHENG YU

The structure stability and electronic properties of CumConCO ([Formula: see text]–7) clusters have been systematically investigated using density functional theory (DFT) within the generalized gradient approximation (GGA). The results indicate that the ground state structures of CumConCO clusters obtained by adsorbing CO molecules on the top sites of stable CumConclusters with C atoms and CO molecules have been activated during adsorption process. Cu2CO, CuCoCO, Cu3CoCO, Co4CO, Cu4CoCO and Cu3Co3CO clusters are stronger than other ground state clusters in thermodynamic stability. Cu2CO, Cu4CO and Cu6CO clusters show stronger chemical stability; Co2CO, Co4CO, Cu5CoCO, Cu3Co3CO, Cu2Co5CO and Co7CO clusters show better propensity to adsorb CO for these clusters have larger adsorption energies; Electronic states of Cu2Co3CO, CuCo4CO, Co5CO, Cu4Co3CO, Cu3Co4CO, CuCo6CO and Co7CO clusters are mainly influenced by those of 3d orbitals in Co and Cu atoms, the contribution to total magnetic moments of these clusters comes mainly from Co atoms and these clusters have high magnetism.


2021 ◽  
Vol 31 (6) ◽  
pp. 335-340
Author(s):  
Ahmed Memdouh Younsi ◽  
Lakhdar Gacem ◽  
Mohamed Toufik Soltani

Trioxides of rubidium, strontium, and ruthenium belong to the family of alkali and alkaline earth ruthenates. SrRuO3 crystallizes in various symmetry classes—orthorhombic, tetragonal, or cubic—whereas RbRuO3 is perovskite (cubic) structured and crystallizes only in the cubic space group Pm3¯¯¯m(No. 221). In this study, we investigated the structural stability as well as the electronic and magnetic properties of two cubic perovskites SrRuO3 and RbRuO3. We established the corresponding lattice parameters, magnetic moments, density of states (DOS), and band structures using ab‑initio density‑functional theory (DFT). Both compounds exhibited a metallic ferromagnetic ground state with lattice parameter values between 3.83 and 3.96 Å; RbRuO3 had magnetic moments between 0.29 and 0.34 µBwhereas SrRuO3 had magnetic moments between 1.33 and 1.66 µB. This study paves way for further RbRuO3 research.


2019 ◽  
Author(s):  
Drew P. Harding ◽  
Laura J. Kingsley ◽  
Glen Spraggon ◽  
Steven Wheeler

The intrinsic (gas-phase) stacking energies of natural and artificial nucleobases were explored using density functional theory (DFT) and correlated ab initio methods. Ranking the stacking strength of natural nucleobase dimers revealed a preference in binding partner similar to that seen from experiments, namely G > C > A > T > U. Decomposition of these interaction energies using symmetry-adapted perturbation theory (SAPT) showed that these dispersion dominated interactions are modulated by electrostatics. Artificial nucleobases showed a similar stacking preference for natural nucleobases and were also modulated by electrostatic interactions. A robust predictive multivariate model was developed that quantitively predicts the maximum stacking interaction between natural and a wide range of artificial nucleobases using molecular descriptors based on computed electrostatic potentials (ESPs) and the number of heavy atoms. This model should find utility in designing artificial nucleobase analogs that exhibit stacking interactions comparable to those of natural nucleobases. Further analysis of the descriptors in this model unveil the origin of superior stacking abilities of certain nucleobases, including cytosine and guanine.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1125
Author(s):  
Teng Teng ◽  
Jinfan Xiong ◽  
Gang Cheng ◽  
Changjiang Zhou ◽  
Xialei Lv ◽  
...  

A new series of tetrahedral heteroleptic copper(I) complexes exhibiting efficient thermally-activated delayed fluorescence (TADF) in green to orange electromagnetic spectral regions has been developed by using D-A type N^N ligand and P^P ligands. Their structures, electrochemical, photophysical, and electroluminescence properties have been characterized. The complexes exhibit high photoluminescence quantum yields (PLQYs) of up to 0.71 at room temperature in doped film and the lifetimes are in a wide range of 4.3–24.1 μs. Density functional theory (DFT) calculations on the complexes reveal the lowest-lying intraligand charge-transfer excited states that are localized on the N^N ligands. Solution-processed organic light emitting diodes (OLEDs) based on one of the new emitters show a maximum external quantum efficiency (EQE) of 7.96%.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Carl E. Belle ◽  
Vural Aksakalli ◽  
Salvy P. Russo

AbstractFor photovoltaic materials, properties such as band gap $$E_{g}$$ E g are critical indicators of the material’s suitability to perform a desired function. Calculating $$E_{g}$$ E g is often performed using Density Functional Theory (DFT) methods, although more accurate calculation are performed using methods such as the GW approximation. DFT software often used to compute electronic properties includes applications such as VASP, CRYSTAL, CASTEP or Quantum Espresso. Depending on the unit cell size and symmetry of the material, these calculations can be computationally expensive. In this study, we present a new machine learning platform for the accurate prediction of properties such as $$E_{g}$$ E g of a wide range of materials.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1404
Author(s):  
Yunfei Yang ◽  
Changhao Wang ◽  
Junhao Sun ◽  
Shilei Li ◽  
Wei Liu ◽  
...  

In this study, the structural, elastic, and thermodynamic properties of DO19 and L12 structured Co3X (X = W, Mo or both W and Mo) and μ structured Co7X6 were investigated using the density functional theory implemented in the pseudo-potential plane wave. The obtained lattice constants were observed to be in good agreement with the available experimental data. With respect to the calculated mechanical properties and Poisson’s ratio, the DO19-Co3X, L12-Co3X, and μ-Co7X6 compounds were noted to be mechanically stable and possessed an optimal ductile behavior; however, L12-Co3X exhibited higher strength and brittleness than DO19-Co3X. Moreover, the quasi-harmonic Debye–Grüneisen approach was confirmed to be valid in describing the temperature-dependent thermodynamic properties of the Co3X and Co7X6 compounds, including heat capacity, vibrational entropy, and Gibbs free energy. Based on the calculated Gibbs free energy of DO19-Co3X and L12-Co7X6, the phase transformation temperatures for DO19-Co3X to L12-Co7X6 were determined and obtained values were noted to match well with the experiment results.


Sign in / Sign up

Export Citation Format

Share Document