scholarly journals Synthesis of InP/ZnS Nanocrystals and Phase Transfer by Hydrolysis of Ester

2018 ◽  
Vol 233 (1) ◽  
pp. 55-67
Author(s):  
Franziska Lübkemann ◽  
Timo C. Gusenburger ◽  
Dominik Hinrichs ◽  
Rasmus Himstedt ◽  
Dirk Dorfs ◽  
...  

Abstract The synthesis of highly luminescent non-toxic nanocrystals (NCs) and the subsequent phase transfer to aqueous solution by hydrolysis of the crystal-bound ester are presented. Therefore, the synthesis of the spherical semiconductor system InP/ZnS was modified by changing the sulfur precursor in the synthesis from 1-dodecanethiol to dodecyl 3-mercaptopropionate (D3MP). By employing D3MP both as sulfur precursor for the ZnS shell growth and as stabilizing ligand, the phase transfer from organic to aqueous solution can be performed easily. Instead of the usually employed ligand exchange with mercaptopropionic acid, the NCs are only shaken with a sodium borate buffer in order to obtain aqueous soluble NCs by hydrolysis of the ester. In future work, the NCs must be protected against aggregation and the long term stability has to be increased. The optical properties of the samples are investigated by UV/Vis and photoluminescence spectroscopy, and the morphology of the nanoparticles (NPs) before and after phase transfer is determined by transmission electron microscopy.

2011 ◽  
Vol 110-116 ◽  
pp. 2308-2315
Author(s):  
Liu Xue Zhang ◽  
Xiu Lian Wang

Fine particles of photoactive anatase-type TiO2, prepared by hydrolysis of tetrabutyl orthotitanate and crystallized under microwave (MV) irradiation, were loaded on adsorbent support attapulgite (ATP). The prepared hybrids TiO2-ATP were characterized with transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and X-ray diffraction (XRD) and photoactivity properties were evaluated separately. The substrates of target were adsorbed on the adsorbent support, and then a high concentration environments of the substrate was formed around the loaded TiO2, resulting in an increase in the photodestruction rate. One of the most interesting features of the resulting catalysts with low titania contain (<30%) is their fast decantability in comparison with that of TiO2. This way one of the most important drawbacks of photocatalysis, the catalysts separation from the solution, was overcome by simple sedimentation and decantation. The low concentrations MB may be removed through enrichment and photodegradation using the prepared TiO2-ATP photocatalyst.


2015 ◽  
Vol 365 ◽  
pp. 212-218
Author(s):  
B.R.P. Nunes ◽  
Líbia de Sousa Conrado ◽  
C.R.S. Morais

Aiming at obtaining glucose, we studied the chemical pretreatment (NaOH + H2SO4) and the hydrolysis of sugarcane bagasse using as catalyst the acid-treated vermiculite clay. Samples of the bagasse before and after the treatment were characterized as to the fiber content and XRD. It has been found that the chemical pretreatment showed satisfactory results providing a decrease of 40% in the lignin content and of 43% in the hemicellulose content, regarding to the bagasse in natura. Catalytic tests in aqueous solution were performed at 200°C, to evaluate the use of vermiculite treated as a catalyst for the hydrolysis of sugarcane bagasse. The reaction product was filtered and the supernatant was analyzed by high performance liquid chromatography. A yield of 6.18% in glucose was achieved.


Author(s):  
T. C. Tisone ◽  
S. Lau

In a study of the properties of a Ta-Au metallization system for thin film technology application, the interdiffusion between Ta(bcc)-Au, βTa-Au and Ta2M-Au films was studied. Considered here is a discussion of the use of the transmission electron microscope(TEM) in the identification of phases formed and characterization of the film microstructures before and after annealing.The films were deposited by sputtering onto silicon wafers with 5000 Å of thermally grown oxide. The film thicknesses were 2000 Å of Ta and 2000 Å of Au. Samples for TEM observation were prepared by ultrasonically cutting 3mm disks from the wafers. The disks were first chemically etched from the silicon side using a HNO3 :HF(19:5) solution followed by ion milling to perforation of the Au side.


Author(s):  
H. Mori ◽  
Y. Murata ◽  
H. Yoneyama ◽  
H. Fujita

Recently, a new sort of nano-composites has been prepared by incorporating such fine particles as metal oxide microcrystallites and organic polymers into the interlayer space of montmorillonite. Owing to their extremely large specific surface area, the nano-composites are finding wide application[1∼3]. However, the topographic features of the microstructures have not been elucidated as yet In the present work, the microstructures of iron oxide-pillared montmorillonite have been investigated by high-resolution transmission electron microscopy.Iron oxide-pillared montmorillonite was prepared through the procedure essentially the same as that reported by Yamanaka et al. Firstly, 0.125 M aqueous solution of trinuclear acetato-hydroxo iron(III) nitrate, [Fe3(OCOCH3)7 OH.2H2O]NO3, was prepared and then the solution was mixed with an aqueous suspension of 1 wt% clay by continuously stirring at 308 K. The final volume ratio of the latter aqueous solution to the former was 0.4. The clay used was sodium montmorillonite (Kunimine Industrial Co.), having a cation exchange capacity of 100 mequiv/100g. The montmorillonite in the mixed suspension was then centrifuged, followed by washing with deionized water. The washed samples were spread on glass plates, air dried, and then annealed at 673 K for 72 ks in air. The resultant film products were approximately 20 μm in thickness and brown in color.


2017 ◽  
Vol 13 (2) ◽  
pp. 4640-4647
Author(s):  
A. M. Abdelghany ◽  
M.S. Meikhail ◽  
S.I. Badr ◽  
A. S. Momen

Thin film samples of pristine polyvinyl chloride (PVC), poly vinyldine fluoride (PVDF) in combination with their blend in addition to samples containing factorial mass fraction of multi wall carbon nano-tubes (MWCNTs) in the dopant level were prepared via routine casting technique using tetrahydrofurane (THF) as a common solvent. X-ray diffraction and transmission electron microscopy (TEM) depict the nano-scale (15-25 nm) of functionalized MWCNTs with no surface damage results from functionalization process.X-ray diffraction (XRD) shows a semi-crystalline nature of PVDF with evidence for more than one phase namely a and b phases. The fraction of b phase was calculated and correlated to the dopant content. FTIR optical absorption spectra revels a preservation of the main vibrational bands before and after addition of MWCNTs in the doping level with a presence of new small band 1151 cm-1 assigned for the interaction and complexation between constituents.


Author(s):  
Xiaoyan Wang ◽  
Jinmei Du ◽  
Changhai Xu

Abstract:: Activated peroxide systems are formed by adding so-called bleach activators to aqueous solution of hydrogen peroxide, developed in the seventies of the last century for use in domestic laundry for their high energy efficiency and introduced at the beginning of the 21st century to the textile industry as an approach toward overcoming the extensive energy consumption in bleaching. In activated peroxide systems, bleach activators undergo perhydrolysis to generate more kinetically active peracids that enable bleaching under milder conditions while hydrolysis of bleach activators and decomposition of peracids may occur as side reactions to weaken the bleaching efficiency. This mini-review aims to summarize these competitive reactions in activated peroxide systems and their influence on bleaching performance.


1983 ◽  
Vol 29 (8) ◽  
pp. 1513-1517 ◽  
Author(s):  
M W McGowan ◽  
J D Artiss ◽  
B Zak

Abstract A procedure for the enzymatic determination of lecithin and sphingomyelin in aqueous solution is described. The phospholipids are first dissolved in chloroform:methanol (2:1 by vol), the solvent is evaporated, and the residue is redissolved in an aqueous zwitterionic detergent solution. The enzymatic reaction sequences of both assays involve hydrolysis of the phospholipids to produce choline, which is then oxidized to betaine, thus generating hydrogen peroxide. The hydrogen peroxide is subsequently utilized in the enzymatic coupling of 4-aminoantipyrine and sodium 2-hydroxy-3,5-dichlorobenzenesulfonate, an intensely red color being formed. The presence of a non-reacting phospholipid enhances the hydrolysis of the reacting phospholipid. Thus we added lecithin to the sphingomyelin standards and sphingomyelin to the lecithin standards. This precise procedure may be applicable to determination of lecithin and sphingomyelin in amniotic fluid.


1971 ◽  
Vol 26 (6) ◽  
pp. 543-545
Author(s):  
Leopoldo J. Anghileri ◽  
Esther S. Miller

The hydrolysis of 32P-sodium polyphosphates (linear and cross-linked) in aqueous solution has been studied. The radiometric determinations indicate that the ortho-phosphate formation is a slow reaction, and that the amount formed by the linear variety is higher than that produced by the cross-linked form. There is a significant formation of metaphosphates during the hydrolysis of the cross-linked polyphosphate which is missing or at least reduced to a much lesser extent in the case of the linear polyphosphate.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1808
Author(s):  
Yali Zhou ◽  
Zhenyao Han ◽  
Chunlin He ◽  
Qin Feng ◽  
Kaituo Wang ◽  
...  

Nanobubbles have many potential applications depending on their types. The long-term stability of different gas nanobubbles is necessary to be studied considering their applications. In the present study, five kinds of nanobubbles (N2, O2, Ar + 8%H2, air and CO2) in deionized water and a salt aqueous solution were prepared by the hydrodynamic cavitation method. The mean size and zeta potential of the nanobubbles were measured by a light scattering system, while the pH and Eh of the nanobubble suspensions were measured as a function of time. The nanobubble stability was predicted and discussed by the total potential energies between two bubbles by the extended Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. The nanobubbles, except CO2, in deionized water showed a long-term stability for 60 days, while they were not stable in the 1 mM (milli mol/L) salt aqueous solution. During the 60 days, the bubble size gradually increased and decreased in deionized water. This size change was discussed by the Ostwald ripening effect coupled with the bubble interaction evaluated by the extended DLVO theory. On the other hand, CO2 nanobubbles in deionized water were not stable and disappeared after 5 days, while the CO2 nanobubbles in 1 mM of NaCl and CaCl2 aqueous solution became stable for 2 weeks. The floating and disappearing phenomena of nanobubbles were estimated and discussed by calculating the relationship between the terminal velocity of the floating bubble and bubble size.


Sign in / Sign up

Export Citation Format

Share Document