scholarly journals Geospatial analysis of drought tendencies in the Carpathians as reflected in a 50-year time series

2019 ◽  
pp. 269-282 ◽  
Author(s):  
Szilárd Szabó ◽  
Noémi Mária Szopos ◽  
Boglárka Bertalan-Balázs ◽  
Elemér László ◽  
Dragan D Milošević ◽  
...  

Climate change is one of the most important issues of anthropogenic activities. The increasing drought conditions can cause water shortage and heat waves and can influence the agricultural production or the water supply of cities. The Carpathian region is also affected by this phenomenon; thus, we aimed at identifying the tendencies between 1960 and 2010 applying the CarpatClim (CC) database. We calculated the trends for each grid point of CC, plotted the results on maps, and applied statistical analysis on annual and seasonal level. We revealed that monthly average temperature, maximum temperature and evapotranspiration had similar patterns and had positive trends in all seasons except autumn. Precipitation also had a positive trend, but it had negative values in winter. The geospatial analysis disclosed an increasing trend from West to East and from north to west. A simple binary approach (value of 1 above the upper quartile in case of temperature and evapotranspiration, value of 1 below the lower quartile; 0 for the rest of the data) helped to identify the most sensitive areas where all the involved climatic variables exceeded the threshold: Western Hungary and Eastern Croatia. Results can help to prepare possible mitigation strategies to climate change and both landowners and planners can draw the conclusions.

Resources ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 57 ◽  
Author(s):  
Miguel Imaz-Lamadrid ◽  
Jobst Wurl ◽  
Ernesto Ramos-Velázquez

In arid and semiarid zones, groundwater plays a key role in the ecology and availability of freshwater. Coastal lagoons in arid zones have great importance as a refuge for species of flora and fauna, as a source of freshwater, and for recreational purposes for local communities and tourism. In addition, as environments under natural stress, they are suffering pressure from anthropogenic activities and climate change, especially in zones with intense touristic development as in the case of the Baja California Peninsula in northwest Mexico. In this paper, we analyze the future of a coastal lagoon impacted by climate change and anthropogenic pressures. We constructed a groundwater MODFLOW-SWI2 model to predict changes in freshwater–saltwater inputs and correlated them with the geospatial analysis of the distribution and evolution of the water body and surrounding vegetation. The methodology was applied to the San Jose lagoon, one of the most important wetlands in the Baja California peninsula, which had been affected by anthropogenic activities and endangered by climate change. According to our water balance, the deficit of the San Jose aquifer will increase by 2040 as a result of climate change. The water table north of the lagoon will drop, affecting the amount of freshwater inflow. This reduction, together with an increase of evapotranspiration and the sea-level rise, will favor an increase of mineralization, reducing the surface water and groundwater quality and in consequence affecting the vegetation cover. Without proper management and adequate measures to mitigate these impacts, the lagoon may disappear as a freshwater ecosystem. Results of this research indicate that the use of a groundwater flow model, together with a geospatial analysis provide effective tools to predict scenarios for the future of coastal lagoons, and serve as a basis for land planning, nature conservation, and sustainable management of these ecosystems.


Author(s):  
Hung Ho ◽  
Sawaid Abbas ◽  
Jinxin Yang ◽  
Rui Zhu ◽  
Man Wong

Climate variability has been documented as being key to influencing human wellbeing across cities as it is linked to mortality and illness due to changes in the perceived weather cycle. Many studies have investigated the impact of summer temperature on human health and have proposed mitigation strategies for summer heat waves. However, sub-tropical cities are still experiencing winter temperature variations. Increasing winter perceived temperature through the decades may soon affect city wellbeing, due to a larger temperature change between normal winter days and extreme cold events, which may cause higher health risk due to lack of adaptation and self-preparedness. Therefore, winter perceived temperature should also be considered and integrated in urban sustainable planning. This study has integrated the increasing winter perceived temperature as a factor for developing spatiotemporal protocols for mitigating the adverse impact of climate change. Land surface temperature (LST) derived from satellite images and building data extracted from aerial photographs were used to simulate the adjusted wind chill equivalent temperature (AWCET) particularly for sub-tropical scenarios between 1990 and 2010 of the Kowloon Peninsula, Hong Kong. Compared with perceived temperature based on the representative station located at the headquarters of the Hong Kong Observatory, the temperature of half the study area in the Kowloon Peninsula has raised by 1.5 °C. The areas with less green space and less public open space in 2010 show higher relative temperatures. Socioeconomically deprived areas (e.g., areas with lower median monthly income) may suffer more from this scenario, but not all types of socioeconomic disparities are associated with poor sustainable planning. Based on our results and the “no-one left behind” guideline from the United Nations, climate change mitigation should be conducted by targeting socioeconomic neighborhoods more than just aging communities.


Author(s):  
Hojjatollah Yazdanpanah ◽  
Josef Eitzinger ◽  
Marina Baldi

Purpose The purpose of this paper is to assess the spatial and temporal variations of extreme hot days (H*) and heat wave frequencies across Iran. Design/methodology/approach The authors used daily maximum temperature (Tmax) data of 27 synoptic stations in Iran. These data were standardized using the mean and the standard deviation of each day of the year. An extreme hot day was defined when the Z score of daily maximum temperature of that day was equal or more than a given threshold fixed at 1.7, while a heat wave event was considered to occur when the Z score exceeds the threshold for at least three continuous days. According to these criteria, the annual frequency of extreme hot days and the number of heat waves were determined for all stations. Findings The trend analysis of H* shows a positive trend during the past two decades in Iran, with the maximum number of H* (110 cases) observed in 2010. A significant trend of the number of heat waves per year was also detected during 1991-2013 in all the stations. Overall, results indicate that Iran has experienced heat waves in recent years more often than its long-term average. There will be more frequent and intense hot days and heat waves across Iran until 2050, due to estimated increase of mean air temperature between 0.5-1.1 and 0.8-1.6 degree centigrade for Rcp2.6 and Rcp8.8 scenarios, respectively. Originality/value The trend analysis of hot days and heat wave frequencies is a particularly original aspect of this paper. It is very important for policy- and decision-makers especially in agriculture and health sectors of Iran to make some adaptation strategies for future frequent and intense hot days over Iran.


2018 ◽  
Vol 5 (1) ◽  
pp. 33-46
Author(s):  
Oyeleke Oluwaseun Oyerinde

The reality of climate change as an aspect of broader global and environmental change attributable to either natural or anthropogenic cause is becoming more evident. Equally, energy, chiefly oil and gas is not only a major climate change inducer via greenhouse gas emissions anymore, but also a victim of the impacts therein. As such, this paper examines the impact of recorded changes in climatic variables on oil and gas operations categorized into upstream, midstream and downstream operations representing exploration and production, transportation, along with processing and distribution respectively. Identified changes in weather events primarily driven by general climate change having significant impact on oil and gas operations and infrastructure include increasing temperature, increasing flooding, storm surges, sea level rise, coastal erosion, intense winds and waves, drought/water shortage and subsidence/landslides/mudslides and they all pose tremendous risk to onshore and offshore (shallow and deep water) operations and installations. Several adaptation measures are currently being implemented some of which are already yielding positive results. Adaptation measures are being complemented with mitigation strategies as long-term solutions. Sadly, most developing oil producing countries are still way behind in adopting various existing adaptation measures and implementing mitigative strategies due to prevalent low capacity.


2019 ◽  
Vol 6 ◽  
pp. 11-20
Author(s):  
Payaswini Ghimire

Climate change is now a global issue and its impact on different sectors like water sources, biodiversity, health, livestock, and livelihood are already seen. Climate change is accelerating due to the emission of greenhouse gases produced by anthropogenic activities. Though Nepal’s contribution to greenhouse gases is negligible compared to developed countries, its risk to climate change is very high. Thus, it extremely important to understand the current scenario of climate change of Nepal. Hence, this article reviews and compares the published articles which studies the pattern and trend of climate change of the time period of at least 30 years. Most of the article shows increasing trend of temperature. According to the recent study, maximum temperature was found to be increasing by 0.05°C/year and minimum temperature was found to increase by 0.03°C/year. Though, the trend of precipitation in Nepal is not clear like temperature most of the studies have concluded increasing in monsoon precipitation in coming years.


2018 ◽  
Vol 50 ◽  
pp. 01004 ◽  
Author(s):  
Carlos M. Lopes ◽  
Joaquim M. Costa ◽  
Ricardo Egipto ◽  
Olfa Zarrouk ◽  
Maria M. Chaves

Climate change introduced new challenges to vinegrowers in the Mediterranean areas such as the hot and dry winegrowing region of Alentejo, south Portugal. Warmer and drier conditions are harmful for grape yield and berry quality attributes and for vine’s longevity, mainly when optimal thresholds are exceeded. Therefore winegrowers are forced to move from rainfed to irrigated production systems making Alentejo’ wine production strongly based on available water resources for irrigation. This work aims to review and discuss ecophysiological and agronomical data obtained in irrigation trials set up at different terroirs of Alentejo. In the last four decades, classical bioclimatic temperature-based indices showed a significantly positive trend, while the dryness index present a negative trend over time. Furthermore, ecophysiological data collected in deficit irrigation experiments are reviewed and discussed, focusing on the effects of drought and heat stress on vigour, yield and berry composition. Emphasis is given on the indirect effects of leaf senescence on cluster exposure and consequences on berry temperature and composition. In order to promote the sustainability and quality of wine production in these hot and dry terroirs short- to long-term adaptation measures are suggested. The limitations and risks of using deficit irrigation during heat waves are also underlined.


2020 ◽  
Vol 10 (3) ◽  
pp. 1149 ◽  
Author(s):  
Alfredo Rocha ◽  
Susana C. Pereira ◽  
Carolina Viceto ◽  
Rui Silva ◽  
Jorge Neto ◽  
...  

Heat waves are large-scale atmospheric phenomena that may cause heat stress in ecosystems and socio-economic activities. In cities, morbidity and mortality may increase during a heat wave, overloading health and emergency services. In the face of climate change and associated warming, cities need to adapt and mitigate the effects of heat waves. This study suggests a new method to evaluate heat waves’ impacts on cities by considering some aspects of heat waves that are not usually considered in other similar studies. The method devises heat wave quantities that are easy to calculate; it is relevant to assessing their impacts and permits the development of adaptation measures. This study applies the suggested method to quantify various aspects of heat waves in Lisbon for future climate projections considering future mid-term (2046–2065) and long-term (2081–2100) climates under the RCP8.5 greenhouse emission scenario. This is achieved through the analysis of various regional climate simulations performed with the WRF model and an ensemble of EURO-CORDEX models. This allows an estimation of uncertainty and confidence of the projections. To evaluate the climate change properties of heat waves, statistics for future climates are compared to those for a reference recent climate. Simulated temperatures are first bias corrected to minimize the model systematic errors relative to observations. The temperature for mid and long-term futures is expected to increase relative to the present by 1.6 °C and 3.6 °C, respectively, with late summer months registering the highest increases. The number of heat wave days per year will increase on average from 10, in the present climate, to 38 and 63 in mid and long-term climates, respectively. Heat wave duration, intensity, average maximum temperature, and accumulated temperature during a heat wave will also increase. Heat waves account for an annual average of accumulated temperature of 358 °C·day in the present climate, while in the mid and long-term, future climates account for 1270 °C·day and 2078 °C·day, respectively. The largest increases are expected to occur from July to October. Extreme intensity and long-duration heat waves with an average maximum temperature of more than 40 °C are expected to occur in the future climates.


Author(s):  
Madhusudhan M S

Climate change is mostly driven by global warming. Climate change is one of the most critical long-term development issues, particularly for developing countries like India. India is one of the world's most climatically diverse countries, making it sensitive to climatic change and impacting the livelihoods of millions of people who rely on agriculture. Temperature and its fluctuation have direct and indirect impacts on crop development in the agricultural sector. Understanding the temperature and its variability in a changing environment would aid in improved decision-making and suggest feasible adaption strategies. The present study focuses on temperature trend analysis in Mandya city, Karnataka, India. The analysis was carried out through the non-parametric Mann-Kendall test and Sen's slope estimator. The findings demonstrate that, there has been a rising trend in temperature in the study area over the last 30 years as a result of climate change. From the analysis, there is a significant positive trend for all the seasons considered for the significance level of 90%, 95% and 99%. The magnitude of the increasing trend will be in the range of 0.46 °C/year for the average time series. Also, there will be an average increase of 0.07 °C/year for the various scenarios considered in Mandya city for the Maximum temperature series.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 978 ◽  
Author(s):  
Marco D’Oria ◽  
Maria Tanda ◽  
Valeria Todaro

This study provides an up-to-date analysis of climate change over the Salento area (southeast Italy) using both historical data and multi-model projections of Regional Climate Models (RCMs). The accumulated anomalies of monthly precipitation and temperature records were analyzed and the trends in the climate variables were identified and quantified for two historical periods. The precipitation trends are in almost all cases not significant while the temperature shows statistically significant increasing tendencies especially in summer. A clear changing point around the 80s and at the end of the 90s was identified by the accumulated anomalies of the minimum and maximum temperature, respectively. The gradual increase of the temperature over the area is confirmed by the climate model projections, at short—(2016–2035), medium—(2046–2065) and long-term (2081–2100), provided by an ensemble of 13 RCMs, under two Representative Concentration Pathways (RCP4.5 and RCP8.5). All the models agree that the mean temperature will rise over this century, with the highest increases in the warm season. The total annual rainfall is not expected to significantly vary in the future although systematic changes are present in some months: a decrease in April and July and an increase in November. The daily temperature projections of the RCMs were used to identify potential variations in the characteristics of the heat waves; an increase of their frequency is expected over this century.


2021 ◽  
Author(s):  
Raju Kalita ◽  
Dipangkar Kalita ◽  
Atul Saxena

Abstract We have used Mann-Kendall trend test and Sen’s slope estimator method to find out significant changes in extreme climate indices for daily temperature as well as precipitation over the period 1979 to 2020 in Cherrapunji. In the present study, a total of 24 precipitation and temperature based extreme climate indices were calculated using RClimDex v 1.9-3. Among 24 indices, 7 were derived from number of days above nn mm rainfall (Rnn) according to Indian Meteorological Department (IMD) convention and the rest were in accordance with the Expert Team on Climate Change Detection and Indices (ETCCDI). It was observed that, among all the indices, consecutive dry days (CDD), summer days (SU25) and very light rainfall (VLR) days increased significantly with 0.54, 1.58 and 0.14 days/year respectively, while only consecutive wet days (CWD) decreased significantly with 0.36 days/year. A slight negative trend was also observed in case of tropical nights (TR20) and among the other precipitation indices as well. Again, the indices associated with daily maximum temperature increased significantly with annual change of 0.06 to 0.07 ⁰C/year. And for indices associated with daily minimum temperature, almost no change or a slight negative change was observed, except a significant positive trend in February and significant negative trend in November for TNN only. The analysis reveals that some of the extreme climate indices which explains the climatic conditions of Cherrapunji has changed a lot over the period of 42 years and if this trend continues then Cherrapunji will be under threat when it comes to climate change.


Sign in / Sign up

Export Citation Format

Share Document