TinyCubus: An Adaptive Cross-Layer Framework for Sensor Networks (TinyCubus: Ein Adaptives Cross-Layer Framework für Sensornetze)

2005 ◽  
Vol 47 (2) ◽  
Author(s):  
Pedro José Marrón ◽  
Daniel Minder ◽  
Andreas Lachenmann ◽  
Kurt Rothermel

SummuryWith the proliferation of sensor networks and sensor network applications, the overall complexity of such systems is continuously increasing. Sensor networks are now heterogeneous in terms of their hardware characteristics and application requirements even within a single network. In addition, the requirements of currently supported applications are expected to change over time. All of this makes developing, deploying, and optimizing sensor network applications an extremely difficult task. In this paper, we present the architecture of TinyCubus, a flexible and adaptive cross-layer framework for TinyOS-based sensor networks that aims at providing the necessary infrastructure to cope with the complexity of such systems. TinyCubus consists of a cross-layer framework that enables optimizations through cross-layer interactions, a configuration engine that distributes components efficiently by considering the roles of the sensor nodes and provides support to install components dynamically, and a data management framework that selects and adapts both system and data management components. Finally, relevant research challenges associated with the development of each framework are identified and discussed in the paper.

Author(s):  
Sukant Kishoro Bisoyi ◽  
Mohit Ranjan Panda ◽  
Sangeeta Mishra

A Wireless Sensor Network (WSN) is a collection of thousands of tiny sensor nodes having the capability of wireless communication, limited computation and sensing. Many data dissemination protocols have been proposed for multi-hop communication in sensor networks, each evaluated in some scenario. Many protocols are designed to exploit application requirements, then no one protocol can be optimized for all applications. Directed diffusion is a prominent example of data-centric routing in sensor networks, since it is based on application layer data and purely local interactions. However; its functioning relies heavily on expensive operations, like network-wide flooding. The purpose of this paper is to explore different directed diffusion protocols and their performance as the number of sinks and sources increases, the traffic rate and node placement varies, and with and without geographic proximity in node placement. We present the simulation-based performance evaluation using NS2 and tuning of data dissemination in wireless sensor networks. Hope our result would be useful to match dissemination algorithms to application performance requirements.


Author(s):  
Subhra Prosun Paul ◽  
◽  
Dr. Shruti Aggarwal ◽  

In today’s World sensor networks offer various opportunities for data management applications because of their low cost, reliability, scalability, high-speed data processing, and other versatile advantageous purposes. It is a great challenge to organize data effectively and to retrieve the appropriate data from the large volume of various data sets in ad-hoc network databases, mobile databases, etc. The sensor network is necessary for routing of data, performance analysis of data management activities, and data incorporation for the right application. Data management involves intranet and extranet query handling, data access mechanism, modeling of data, different data movement algorithm, data warehousing, and data mining of network database. Additionally, connectivity, design, and lifetime are important issues for sensor networks to perform all data management activities smoothly. In this paper, we are trying to give a cognitive research tendency of Sensor network data management in the last two decades considering all the challenges and issues of both sensor network database and data management functions using Scopus and Web of Science database. To analyze data, different assessments are done considering various parameters like the author, time, publication and citation number, place, source, document separately for Web of Science and Scopus database in global perspective. It is noticed that there is a significant growth of research in data management for sensor networks because of the popularity of this topic.


Information ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 236 ◽  
Author(s):  
Nengsong Peng ◽  
Weiwei Zhang ◽  
Hongfei Ling ◽  
Yuzhao Zhang ◽  
Lixin Zheng

A key issue in wireless sensor network applications is how to accurately detect anomalies in an unstable environment and determine whether an event has occurred. This instability includes the harsh environment, node energy insufficiency, hardware and software breakdown, etc. In this paper, a fault-tolerant anomaly detection method (FTAD) is proposed based on the spatial-temporal correlation of sensor networks. This method divides the sensor network into a fault neighborhood, event and fault mixed neighborhood, event boundary neighborhood and other regions for anomaly detection, respectively, to achieve fault tolerance. The results of experiment show that under the condition that 45% of sensor nodes are failing, the hit rate of event detection remains at about 97% and the false negative rate of events is above 92%.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ahmad S. Almogren

With recent advances in wireless sensor networks and embedded computing technologies, body sensor networks (BSNs) have become practically feasible. BSNs consist of a number of sensor nodes located and deployed over the human body. These sensors continuously gather vital sign data of the body area to be used in various intelligent systems in smart environments. This paper presents an intelligent design of the body sensor network based on virtual hypercube structure backbone termed as Smart BodyNet. The main purpose of the Smart BodyNet is to provide resilience for the BSN operation and reduce power consumption. Various experiments were carried out to show the performance of the Smart BodyNet design as compared to the state-of-the-art approaches.


The emergence of sensor networks as one of the dominant technology trends in the coming decades has posed numerous unique challenges on their security to researchers. These networks are likely to be composed of thousands of tiny sensor nodes, which are low-cost devices equipped with limited memory, processing, radio, and in many cases, without access to renewable energy resources. While the set of challenges in sensor networks are diverse, we focus on security of Wireless Sensor Network in this paper. First, we propose some of the security goal for Wireless Sensor Network. To perform any task in WSN, the goal is to ensure the best possible utilization of sensor resources so that the network could be kept functional as long as possible. In contrast to this crucial objective of sensor network management, a Denial of Service (DoS) attack targets to degrade the efficient use of network resources and disrupts the essential services in the network. DoS attack could be considered as one of th


Author(s):  
Wajeeha Aslam ◽  
Muazzam A. Khan ◽  
M. Usman Akram ◽  
Nazar Abbas Saqib ◽  
Seungmin Rho

Wireless sensor networks are greatly habituated in widespread applications but still yet step behind human intelligence and vision. The main reason is constraints of processing, energy consumptions and communication of image data over the sensor nodes. Wireless sensor network is a cooperative network of nodes called motes. Image compression and transmission over a wide ranged sensor network is an emerging challenge with respect to battery, life time constraints. It reduces communication latency and makes sensor network efficient with respect to energy consumption. In this paper we will have an analysis and comparative look on different image compression techniques in order to reduce computational load, memory requirements and enhance coding speed and image quality. Along with compression, different transmission methods will be discussed and analyzed with respect to energy consumption for better performance in wireless sensor networks.


Author(s):  
Abedelaziz Mohaisen ◽  
Tamer AbuHmed ◽  
DaeHun Nyang

The use of public key algorithms to sensor networks brings all merits of these algorithms to such networks: nodes do not need to encounter each other in advance in order to be able to communicate securely. However, this will not be possible unless “good” key management primitives that guarantee the functionality of these algorithms in the wireless sensor networks are provided. Among these primitives is public key authentication: before sensor nodes can use public keys of other nodes in the network to encrypt traffic to them, they need to make sure that the key provided for a particular node is authentic. In the near past, several researchers have addressed the problem and proposed solutions for it as well. In this chapter we review these solutions. We further discuss a new scheme which uses collaboration among sensor nodes for public key authentication. Unlike the existing solutions for public key authentication in sensor network, which demand a fixed, yet high amount of resources, the discussed work is dynamic; it meets a desirable security requirement at a given overhead constraints that need to be provided. It is scalable where the accuracy of the authentication and level of security are merely dependent upon the desirable level of resource consumption that the network operator wants to put into the authentication operation.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4281
Author(s):  
Ngoc-Thanh Dinh ◽  
Younghan Kim

Wireless sensor network (WSN) studies have been carried out for multiple years. At this stage, many real WSNs have been deployed. Therefore, configuration and updating are critical issues. In this paper, we discuss the issues of configuring and updating a wireless sensor network (WSN). Due to a large number of sensor nodes, in addition to the limited resources of each node, manual configuring turns out to be impossible. Therefore, various auto-configuration approaches have been proposed to address the above challenges. In this survey, we present a comprehensive review of auto-configuration mechanisms with the taxonomy of classifications of the existing studies. For each category, we discuss and compare the advantages and disadvantages of related schemes. Lastly, future works are discussed for the remaining issues in this topic.


Author(s):  
Saloni Dhiman ◽  
Deepti Kakkar ◽  
Gurjot Kaur

Wireless sensor networks (WSNs) consist of several sensor nodes (SNs) that are powered by battery, so their lifetime is limited, which ultimately affects the lifespan and hence performance of the overall networks. Till now many techniques have been developed to solve this problem of WSN. Clustering is among the effective technique used for increasing the network lifespan. In this chapter, analysis of multi-hop routing protocol based on grid clustering with different selection criteria is presented. For analysis, the network is divided into equal-sized grids where each grid corresponds to a cluster and is assigned with a grid head (GH) responsible for collecting data from each SN belonging to respective grid and transferring it to the base station (BS) using multi-hop routing. The performance of the network has been analyzed for different position of BS, different number of grids, and different number of SNs.


Sign in / Sign up

Export Citation Format

Share Document