scholarly journals PREPARATION AND CHARACTERIZATION OF CHITOSAN-AGAR FILMS

Author(s):  
Joanna Wolska ◽  
Joanna Setkowicz ◽  
Irena H. Maliszewska

Hydrogel films composed of chitosan and agar or chitosan, agar and honey/bee pollen were prepared; they could be used as active wound dressings. During this study, various types of gel films were prepared using chitosan with different molecular weights and ratios of the two biopolymers. In addition, compositions with different amounts of honey or bee pollen were obtained. The selected samples were characterized by determining typical properties that are important for wound dressings. The best twocomponent films had a chitosan to agar weight ratio of 2:1. From among the examined tri-component films, the 2:1:0.5 weight ratio of chitosan, agar and 50 wt% honey solution was the best composition.

BIOCELL ◽  
2021 ◽  
Vol 45 (5) ◽  
pp. 1273-1285
Author(s):  
BARKAT ALI KHAN ◽  
FAZAL KARIM ◽  
MUHAMMAD KHALID KHAN ◽  
FAHEEM HAIDER ◽  
SADIQULLAH KHAN

2007 ◽  
Vol 345-346 ◽  
pp. 1511-1514 ◽  
Author(s):  
Andi Haris ◽  
Tadaharu Adachi ◽  
Wakako Araki ◽  
Yu Hayashi

The effect of adding a high molecular weight epoxy monomer (epikote 1001) to a low molecular weight one (epikote 828) on fracture toughness properties was investigated according to the crosslinking degree and density heterogeneity. To characterize the crosslinking degree and density heterogeneity, the glass transition temperature, Tg, and fragility, m, were deduced from thermo-viscoelastic properties. The characterization of Tg and m revealed that blends can be divided into two groups: one group with (φ < 10 wt%) and another one with (φ > 10 wt%), where φ is the weight ratio of epikote 1001 to epikote 828. The first group had the same average crosslinking degree (the same Tg) but different density heterogeneities (m decreased). The other group had a lower crosslinking degree (Tg decreased) and even more density heterogeneity (m decreased). The fracture toughness results showed that KIC of blends of the first group was approximately constant because the increase in density heterogeneity was still too weak (ineffective m), whereas KIC of blends of the second group was higher due to the simultaneous decrease in average crosslinking degree and increase in density heterogeneity. Therefore, the lower crosslinking degree (lower Tg) is and the more heterogeneous the blend (lower m) is due to the addition of high molecular weight monomer, the higher KIC becomes.


Author(s):  
Ruchama Baum ◽  
J.T. Seto

The ribonucleic acid (RNA) of paramyxoviruses has been characterized by biochemical and physiochemical methods. However, paramyxovirus RNA molecules have not been studied by electron microscopy. The molecular weights of these single-stranded viral RNA molecules are not known as yet. Since electron microscopy has been found to be useful for the characterization of single-stranded RNA, this investigation was initiated to examine the morphology and length measurements of paramyxovirus RNA's.Sendai virus Z strain and Newcastle disease virus (NDV), Milano strain, were used. For these studies it was necessary to develop a method of extracting RNA molecules from purified virus particles. Highly purified Sendai virus was treated with pronase (300 μg/ml) at 37°C for 30 minutes and the RNA extracted by the sodium dodecyl sulfate (SDS)-phenol procedure.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 641-649
Author(s):  
JOSHUA OMAMBALA ◽  
CARL MCINTYRE

The vast majority of tissue production uses creping to achieve the required set of properties on the base sheet. The Yankee coating helps to develop the desired crepe that in turn determines properties such as bulk and softness. The adhesion of the sheet to the Yankee surface is a very important characteristic to consider in achieving the desired crepe. The coating mix usually consists of the adhesive, modifier, and release. A good combination of these components is essential to achieving the desired properties of the tissue or towel, which often are determined by trials on the machine that can be time consuming and lead to costly rejects. In this paper, five compositions of an industrial Yankee coating adhesive, modifier, and release were examined rheologically. The weight ratio of the adhesive was kept constant at 30% in all five compositions and the modifier and release ratios were varied. The normal force and work done by the different compositions have been shown at various temperatures simulating that of the Yankee surface, and the oscillatory test was carried out to explain the linear and nonlinear viscoelastic characteristic of the optimal coating composition.


2019 ◽  
Vol 9 (02) ◽  
Author(s):  
Zena G. Alrecabi ◽  
Zainab Amer ◽  
Naeemah Al-Lami

This study including prepared new colored esters containing heterocyclic with high molecular weights. In the first part of work we synthesized azo dyes [1,2] from the reaction p-toluidine with β-naphthol and o-nitro phenol, thin we synthesized Schiff bases [3,4] by the reaction anthranilic acid with benzaldehyde and dimethyl benzaldehyde. The reaction azo dyes (contain OH group) with Schiff base (contain COOH group) these led to produce the new colored esters [A1-A4]. The second part of work was modification the (C=N-) group in esters to heterocyclic compounds by reacting with phenyl iso cyanide to produce new β-lactam [B1-B4] and with anthranilic acid to get new hydroquinazoline [C1-C4]. All these compounds were characterized by physical properties and spectral methods FTIR, 1H-NMR and 13C-NMR.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 992
Author(s):  
Suchitha Devadas ◽  
Saja M. Nabat Al-Ajrash ◽  
Donald A. Klosterman ◽  
Kenya M. Crosson ◽  
Garry S. Crosson ◽  
...  

Lignin macromolecules are potential precursor materials for producing electrospun nanofibers for composite applications. However, little is known about the effect of lignin type and blend ratios with synthetic polymers. This study analyzed blends of poly(acrylonitrile-co-methyl acrylate) (PAN-MA) with two types of commercially available lignin, low sulfonate (LSL) and alkali, kraft lignin (AL), in DMF solvent. The electrospinning and polymer blend solution conditions were optimized to produce thermally stable, smooth lignin-based nanofibers with total polymer content of up to 20 wt % in solution and a 50/50 blend weight ratio. Microscopy studies revealed that AL blends possess good solubility, miscibility, and dispersibility compared to LSL blends. Despite the lignin content or type, rheological studies demonstrated that PAN-MA concentration in solution dictated the blend’s viscosity. Smooth electrospun nanofibers were fabricated using AL depending upon the total polymer content and blend ratio. AL’s addition to PAN-MA did not affect the glass transition or degradation temperatures of the nanofibers compared to neat PAN-MA. We confirmed the presence of each lignin type within PAN-MA nanofibers through infrared spectroscopy. PAN-MA/AL nanofibers possessed similar morphological and thermal properties as PAN-MA; thus, these lignin-based nanofibers can replace PAN in future applications, including production of carbon fibers and supercapacitors.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1018
Author(s):  
Massimo Marcioni ◽  
Jenny Alongi ◽  
Elisabetta Ranucci ◽  
Mario Malinconico ◽  
Paola Laurienzo ◽  
...  

The hitherto known polyamidoamines (PAAs) are not suitable as structural materials because they are usually water-soluble or swellable in water. This paper deals with the synthesis and characterization of semi-crystalline hydrophobic PAAs (H-PAAs) by combining different bis-sec-amines with bis-acrylamides obtained from C6–C12 bis-prim-amines. H-PAAs were initially obtained in a solution of benzyl alcohol, a solvent suitable for both monomers and polymers. Their number average molecular weights, M¯n, which were determined with 1H-NMR by evaluating the percentage of their terminal units, varied from 6000 to >10,000. The solubility, thermal properties, ignitability and water resistance of H-PAAs were determined. They were soluble in organic solvents, semi-crystalline and thermally stable. The most promising ones were also prepared using a bulk process, which has never been previously reported for PAA synthesis. In the form of films, these H-PAAs were apparently unaffected by water. The films underwent tensile and wettability tests. They showed similar Young moduli (260–263 MPa), whereas the maximum stress and the stress at break depended on the number of methylene groups of the starting bis-acrylamides. Their wettability was somewhat higher than that of common Nylons. Interestingly, none of the H-PAAs considered, either as films or powders, ignited after prolonged exposure to a methane flame.


Author(s):  
Rahma R. Z. Mahdy ◽  
Shaimaa A. Mo’men ◽  
Marah M. Abd El-Bar ◽  
Emad M. S. Barakat

Abstract Background Insect lipid mobilization and transport are currently under research, especially lipases and lipophorin because of their roles in the production of energy and lipid transport at a flying activity. The present study has been conducted to purify intracellular fat body lipase for the first time, from the last larval instar of Galleria mellonella. Results Purification methods by combination of ammonium sulfate [(NH4)2SO4] precipitation and gel filtration using Sephadex G-100 demonstrated that the amount of protein and the specific activity of fat body lipase were 0.008633 ± 0.000551 mg/ml and 1.5754 ± 0.1042 μmol/min/mg protein, respectively, with a 98.9 fold purity and recovery of 50.81%. Hence, the sephadex G-100 step was more effective in the purification process. SDS-PAGE and zymogram revealed that fat body lipase showed two monomers with molecular weights of 178.8 and 62.6 kDa. Furthermore, biochemical characterization of fat body lipase was carried out through testing its activities against several factors, such as different temperatures, pH ranges, metal ions, and inhibitors ending by determination of their kinetic parameters with the use of p-nitrophenyl butyrate (PNPB) as a substrate. The highest activities of enzyme were determined at the temperature ranges of 35–37 °C and 37–40 °C and pH ranges of 7–9 and 7–10. The partially purified enzyme showed significant stimulation by Ca2+, K+, and Na+ metal ions indicating that fat body lipase is metalloproteinase. Lipase activity was strongly inhibited by some inhibitors; phenylmethylsulfonyl fluoride (PMSF), ethylene-diaminetetractic acid (EDTA), and ethylene glycoltetraacetic acid (EGTA) providing evidence of the presence of serine residue and activation of enzymes by metal ions. Kinetic parameters were 0.316 Umg− 1 Vmax and 301.95 mM Km. Conclusion Considering the purification of fat body lipase from larvae and the usage of some inhibitors especially ion chelating agents, it is suggested to develop a successful control of Galleria mellonella in near future by using lipase inhibitors.


2009 ◽  
Vol 126 ◽  
pp. S139 ◽  
Author(s):  
Flavia C. Freitas ◽  
Alexandre S. Cristino ◽  
Francis M. Nunes ◽  
Zila L. Simoes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ahmed O. El-Gendy ◽  
Dag A. Brede ◽  
Tamer M. Essam ◽  
Magdy A. Amin ◽  
Shaban H. Ahmed ◽  
...  

AbstractNosocomial infections caused by enterococci are an ongoing global threat. Thus, finding therapeutic agents for the treatment of such infections are crucial. Some Enterococcus faecalis strains are able to produce antimicrobial peptides called bacteriocins. We analyzed 65 E. faecalis isolates from 43 food samples and 22 clinical samples in Egypt for 17 common bacteriocin-encoding genes of Enterococcus spp. These genes were absent in 11 isolates that showed antimicrobial activity putatively due to bacteriocins (three from food, including isolate OS13, and eight from clinical isolates). The food-isolated E. faecalis OS13 produced bacteriocin-like inhibitory substances (BLIS) named enterocin OS13, which comprised two peptides (enterocin OS13α OS13β) that inhibited the growth of antibiotic-resistant nosocomial E. faecalis and E. faecium isolates. The molecular weights of enterocin OS13α and OS13β were determined as 8079 Da and 7859 Da, respectively, and both were heat-labile. Enterocin OS13α was sensitive to proteinase K, while enterocin OS13β was resistant. Characterization of E. faecalis OS13 isolate revealed that it belonged to sequence type 116. It was non-hemolytic, bile salt hydrolase-negative, gelatinase-positive, and sensitive to ampicillin, penicillin, vancomycin, erythromycin, kanamycin, and gentamicin. In conclusion, BLIS as enterocin OS13α and OS13β represent antimicrobial agents with activities against antibiotic-resistant enterococcal isolates.


Sign in / Sign up

Export Citation Format

Share Document