Study of Wall Static Pressure Distribution on Flat Surface by Impinging Submerged Jet from Non-circular Orifice

Author(s):  
A. M. Hanchinal ◽  
R. N. Patil ◽  
V. V. Katti

The distribution of wall static and stagnation (CP and CPO) pressure coefficient on a flat rectangular element by impinging air jet from the hexagonal orifice is obtained from experimentation. The past research studies helped to identify key parameters such as orifice geometry, jet exit-to-plate-distance (Z/dj), test section inclination (θ), jet Reynold number (Re), lateral distance-to-jet diameter (X/dj), test surface type and geometry, for better and acceptable results. The experimental outcome helps to know the effect of identified key parameters on wall static and stagnation pressure on a rectangular test plate in a confined flow path. The independent nature of wall static pressure is observed for all jet Reynold number (10000 ≤ Re ≤ 50000). Higher pressure coefficient values were observed at lower Z/dj = 1, X/dj = 0 and θ = 0. A significant drop in CP values are seen with the increase in Z/dj, X/dj and θ. The experimental CP and CPO contribution of confined flow are compared against the unconfined flow, around 48% to 58% enhancement is observed when confinement is used. Experimental pressure drop measurements across orifice were made and pressure loss coefficient (PC) for hexagonal orifice of confined and unconfined condition are reported.

Author(s):  
Peng Shan ◽  
Jingyuan Wang ◽  
Zhentao Lv

A new aerodynamic design strategy of the S-shaped transition duct between two compressor components was studied. Based on the controlled wall pressure gradient distribution and the wall velocity distribution, a semi-inverse problem of the transition duct was proposed, the corresponding inverse and direct approach codes were developed. To verify the feasibility of this method, two axial-centrifugal compressor transition ducts were designed. The results show that the static pressure distribution on the inner wall and the duct geometry both can be controlled freely by adjusting the inverse design parameters. The designed inner wall pressure distribution can be realized through a numerical matching procedure of the outer wall geometry based on the direct problem. The new design method is practicable that, without searching the optimal solution of the static pressure distribution of the inner wall, the total pressure coefficient can be at least 0.92.


2020 ◽  
Vol 14 (2) ◽  
pp. 6652-6662
Author(s):  
Anilkumar M. Hanchinal ◽  
V.V. Katti

Jet impingement is most effective and active method for cooling and heating of any surface or system. The ability of jet impingement is greatly influenced by nozzle configuration and other dimensional and non-dimensional parameters. Impinging coaxial swirl jet generates interesting flow filed on any test surface and influences both pressure and heat distribution on impinging surfaces. In present study, an experimental investigation is carried to analyze the effects of turbulent coaxial swirl jet on the pressure distribution (PC & PCO) on convex element. For better and acceptable results, the desirable parameters are identified from previous research works. The present experimental result highlights the independency of pressure coefficient (PC) for jet-Reynolds number (Re=70000 to 45000), effect of circumferential angle (θ) or inclination of test element, effect of jet exit to test element distance (Z/dh) and effect of confinement on PC & PCO pattern on a convex test element. The higher pressure coefficient value are obtained at lower Z/dh = 1 & at θ = 15° to 12°and significant drop in the values are seen with increase in the Z/dh & θ. At θ = 20° to 30° the value of PC & PCO reaches to negative magnitude. The use of confinement tube enhancementthe pressure distribution (PC & PCO) by 61% to 64% is seen for the same flow conditions.


2019 ◽  
Vol 13 (2) ◽  
pp. 4835-4845
Author(s):  
Anilkumar M. Hanchinal ◽  
Vadiraj V. Katti

The experimental investigation is carried out to study the distribution of wall static pressure (Cp & Cpo) on the convex smooth surface by air jet impingement. A great deal of attention was paid to analyze the effects of orifice geometry for various flow and geometric conditions, a comparison of the wall static pressure coefficient is done for different orifice. The experimental results show that the wall static pressure on a convex test section is higher for rectangular orifice compared to other orifice. The wall static pressure decreases circumferentially from its maximum value at the stagnation point (θ = 0°) and also for higher Z/dh. Higher value of Cp and Cpo are obtained for unconfined flow. The experiments were performed with the following parameters: the jet Reynolds number (Re) = 10000–50000, the orifice-to- convex surface distance (Z/dh) = 1–5, Circumferential angle (θ) = 0° to 30°, Curvature ratio (D/dh), Orifice = Circular, Square, Triangle, Rectangle.


Author(s):  
Manjunath L Nilugal ◽  
K Vasudeva Karanth ◽  
Madhwesh N

This article presents the effect of volute chamfering on the performance of a forward swept centrifugal fan. The numerical analysis is performed to obtain the performance parameters such as static pressure rise coefficient and total pressure coefficient for various flow coefficients. The chamfer ratio for the volute is optimized parametrically by providing a chamfer on either side of the volute. The influence of the chamfer ratio on the three dimensional flow domain was investigated numerically. The simulation is carried out using Re-Normalisation Group (RNG) k-[Formula: see text] turbulence model. The transient simulation of the fan system is done using standard sliding mesh method available in Fluent. It is found from the analysis that, configuration with chamfer ratio of 4.4 is found be the optimum configuration in terms of better performance characteristics. On an average, this optimum configuration provides improvement of about 6.3% in static pressure rise coefficient when compared to the base model. This optimized chamfer configuration also gives a higher total pressure coefficient of about 3% validating the augmentation in static pressure rise coefficient with respect to the base model. Hence, this numerical study establishes the effectiveness of optimally providing volute chamfer on the overall performance improvement of forward bladed centrifugal fan.


1957 ◽  
Vol 3 (1) ◽  
pp. 1-16 ◽  
Author(s):  
David R. Miller ◽  
Edward W. Comings

Measurements of mean velocity, turbulent stress and static pressure were made in the mixing region of a jet of air issuing from a slot nozzle into still air. The velocity was low and the two-dimensional flow was effectively incompressible. The results are examined in terms of the unsimplified equations of fluid motion, and comparisons are drawn with the common assumptions and simplifications of free jet theory. Appreciable deviations from isobaric conditions exist and the deviations are closely related to the local turbulent stresses. Negative static pressures were encountered everywhere in the mixing field except in the potential wedge region immediately adjacent to the nozzle. Lateral profiles of mean longitudinal velocity conformed closely to an error curve at all stations further than 7 slot widths from the nozzle mouth. An asymptotic approach to complete self-preservation of the flow was observed.


1994 ◽  
Vol 116 (2) ◽  
pp. 327-332 ◽  
Author(s):  
T. Green ◽  
A. B. Turner

The upstream wheelspace of an axial air turbine stage complete with nozzle guide vanes (NGVs) and rotor blades (430 mm mean diameter) has been tested with the objective of examining the combined effect of NGVs and rotor blades on the level of mainstream ingestion for different seal flow rates. A simple axial clearance seal was used with the rotor spun up to 6650 rpm by drawing air through it from atmospheric pressure with a large centrifugal compressor. The effect of rotational speed was examined for several constant mainstream flow rates by controlling the rotor speed with an air brake. The circumferential variation in hub static pressure was measured at the trailing edge of the NGVs upstream of the seal gap and was found to affect ingestion significantly. The hub static pressure distribution on the rotor blade leading edges was rotor speed dependent and could not be measured in the experiments. The Denton three-dimensional C.F.D. computer code was used to predict the smoothed time-dependent pressure field for the rotor together with the pressure distribution downstream of the NGVs. The level and distribution of mainstream ingestion, and thus the seal effectiveness, was determined from nitrous oxide gas concentration measurements and related to static pressure measurements made throughout the wheelspace. With the axial clearance rim seal close to the rotor the presence of the blades had a complex effect. Rotor blades in connection with NGVs were found to reduce mainstream ingestion seal flow rates significantly, but a small level of ingestion existed even for very high levels of seal flow rate.


1995 ◽  
Author(s):  
D. W. Bailey ◽  
K. M. Britchford ◽  
J. F. Carrotte ◽  
S. J. Stevens

An experimental investigation has been carried out to determine the aerodynamic performance of an annular S-shaped duct representative of that used to connect the compressor spools of aircraft gas turbine engines. For inlet conditions in which boundary layers are developed along an upstream entry length the static pressure, shear stress and velocity distributions are presented. The data shows that as a result of flow curvature significant streamwise pressure gradients exist within the duct, with this curvature also affecting the generation and suppression of turbulence. The stagnation pressure loss within the duct is also assessed and is consistent with the measured distributions of shear stress. More engine representative conditions are provided by locating a single stage compressor at inlet to the duct. Relative to the naturally developed inlet conditions the flow within the duct is less likely to separate, but mixing out of the compressor blade wakes increases the measured duct loss. With both types of inlet conditions the effect of a radial strut, such as that used for carrying loads and engine services, is also described both in terms of the static pressure distribution along the strut and its contribution to overall loss.


Author(s):  
F. Song ◽  
J. W. Shi ◽  
L. Zhou ◽  
Z. X. Wang ◽  
X. B. Zhang

Lighter weight, simpler structure, higher vectoring efficiency and faster vector response are recent trends in development of aircraft engine exhaust system. To meet these new challenges, a concept of hybrid SVC nozzle was proposed in this work to achieve thrust vectoring by adopting a rotatable valve and by introducing a secondary flow injection. In this paper, we numerically investigated the flow mechanism of the hybrid SVC nozzle. Nozzle performance (e.g. the thrust vector angle and the thrust coefficient) was studied with consideration of the influence of aerodynamic and geometric parameters, such as the nozzle pressure ratio (NPR), the secondary pressure ratio (SPR) and the deflection angle of the rotatable valve (θ). The numerical results indicate that the introductions of the rotatable valve and the secondary injection induce an asymmetrically distributed static pressure to nozzle internal walls. Such static pressure distribution generates a side force on the primary flow, thereby achieving thrust vectoring. Both the thrust vector angle and vectoring efficiency can be enhanced by reducing NPR or by increasing θ. A maximum vector angle of 16.7 ° is attained while NPR is 3 and the corresponding vectoring efficiency is 6.33 °/%. The vector angle first increases and then decreases along with the elevation of SPR, and there exists an optimum value of SPR for maximum thrust vector angle. The effects of θ and SPR on the thrust coefficient were found to be insignificant. The rotatable valve can be utilized to improve vectoring efficiency and to control the vector angle as expected.


Sign in / Sign up

Export Citation Format

Share Document