scholarly journals PREPARATION OF SPENT BLEACHING EARTH-SUPPORTED CALCIUM FROM LIMESTONE AS CATALYST IN TRANSESTERIFICATION OF WASTE FRYING OIL

2017 ◽  
Vol 6 (1) ◽  
pp. 68-75 ◽  
Author(s):  
Noor Hindryawati ◽  
Daniel Daniel ◽  
Erwin Erwin ◽  
Gaanty Pragas Maniam

An investigation was conducted on palm oil refinery waste-spent bleaching earth (POR-SBE), POR-SBE supported by calcium as catalysts for methyl esters production through transesterification process using waste frying oil. The catalysts showed longer lasting activity than the traditional alkali catalysts. The optimum conditions for the process were: Ca-POR-SBE catalyst amount 7 %; methanol to oil molar ratio 12:1; and a reaction duration is 4 h. The process was able to transesterify oil to methyl esters at 96.8 % conversion at 65 C. The catalysts were easily separated from the reaction mixture and the final product met selected biodiesel fuel properties in accordance with European Standard EN 14214.

2020 ◽  
Vol 10 (10) ◽  
pp. 3566
Author(s):  
Mary Angélica Ferreira Vela ◽  
Juan C. Acevedo-Páez ◽  
Nestor Urbina-Suárez ◽  
Yeily Adriana Rangel Basto ◽  
Ángel Darío González-Delgado

The search for innovation and biotechnological strategies in the biodiesel production chain have become a topic of interest for scientific community owing the importance of renewable energy sources. This work aimed to implement an enzymatic transesterification process to obtain biodiesel from waste frying oil (WFO). The transesterification was performed by varying reaction times (8 h, 12 h and 16 h), enzyme concentrations of lipase XX 25 split (14%, 16% and 18%), pH of reaction media (6, 7 and 8) and reaction temperature (35, 38 and 40 °C) with a fixed alcohol–oil molar ratio of 3:1. The optimum operating conditions were selected to quantify the amount of fatty acid methyl esters (FAMEs) generated. The highest biodiesel production was reached with an enzyme concentration of 14%, reaction time of 8 h, pH of 7 and temperature of 38 °C. It was estimated a FAMEs production of 42.86% for the selected experiment; however, best physicochemical characteristics of biodiesel were achieved with an enzyme concentration of 16% and reaction time of 8 h. Results suggested that enzymatic transesterification process was favorable because the amount of methyl esters obtained was similar to the content of fatty acids in the WFO.


2015 ◽  
Vol 13 (3) ◽  
pp. 395-406 ◽  
Author(s):  
Y. V. V. Satyanarayana Murthy ◽  
Rajeswara R. Resapu ◽  
M. R. S. Satyanarayana ◽  
Ramakrishna Jogi

Abstract Jatropha curcas oil and methanol are transesterified using potassium triphosphate as base catalyst. The effects of methanol to oil molar ratio, reaction temperature, stirring speed, catalyst concentration, solubility and its reusability on the yield of biodiesel are investigated. The base catalyst tri-potassium phosphate (K3PO4) is found to be highly suitable for oils having less than 1.5% free fatty acids (FFA). Highest biodiesel yield (approximately 92%) is acquired under optimum conditions of 9:1 methanol to oil molar ratio, 2% catalyst at 70°C reaction temperature at a stirring speed of 650 rpm. The chemical activity of K3PO4 is found to be similar to that of base catalyst potassium hydroxide (KOH) and the catalyst solubility in biodiesel as determined by atomic absorption spectra is only 4.81 ppm. It has been found that K3PO4 is highly hygroscopic and its reusability drastically decreases upon further usage and it can be reused only in wetted condition for three continuous usages with drastic reduction in catalytic strength. The biodiesel samples prepared were tested for several physicochemical properties and compared with the values of European biodiesel standards. The fatty acid methyl esters (FAME), also referred to as jatropha methyl esters (JME) in this paper, have been analyzed by gas chromatography and thermogravimetric analysis.


2018 ◽  
Vol 6 (9) ◽  
pp. 451-457
Author(s):  
F. Sini ◽  
I. M Atadashi

Biodiesel was prepared through alkali-catalysed transesterification of neem seed oil using sodium hydroxide as catalyst and ethanol. This process of was carried out firstly throuch eserification and then via transesterification. The process was carried out by varying stirring speed (350, 450, 550, 650, 750 and 850 rpm.) and keeping other variables constant (temperature of 60oC, catalyst concentration of 1w/w%  and 6:1 oil to ethanol molar ratio). In this research work, a yield of 93w/w% was achieved at the stirring speed of 850 rpm. It was observed that the viscosity (3.73mm2/s at 400C) of neem oil methylester generated was within the limit (2-6mm2/s) specified by the American Society for Testing and Materials Standards. The density of neem biodiesel at ambient temperature (250C) was found to be 0.85g/ml, which is exactly close to the density of diesel (0.83g/ml). The Flash Point of the neem oil biodiesel produced was 153.60C which above the ASTM D6751 minimum standards for biodiesel fuel of 130oC. Furthermore, Neem oil biodiesel has a pour point of -40C and a cloud point of 20C. These values clearly indicate that the use of neem oil methyl esters in colder regions is limited. However, this value is also indicative of the high potential of this fuel as biodiesel particularly in Northern Nigeria where temperature is always above 20oC, a temperature at which the oil is fluid.


2019 ◽  
Vol 11 (7) ◽  
pp. 1937 ◽  
Author(s):  
Mariem Harabi ◽  
Soumaya Neji ◽  
Fatma Marrakchi ◽  
Loukia Chrysikou ◽  
Stella Bezergianni ◽  
...  

Waste oils are becoming increasingly more important as feedstock for the production of fuels and glycerol as byproduc. Optimization of homogeneous transesterification of waste frying oil (WFO) to biodiesel over hydroxide potassium (KOH) catalyst have been investigated. In this respect, response surface methodology (RSM) was applied to determine the relationships between methanol and WFO molar ratio (3:1–12:1), KOH concentration (0.5%–2%) and temperature (25–65 °C) on the conversion yield. Transesterification of WFO produced 96.33% maximum methyl ester yield at the optimum methanol/WFO molar ratio 7.3:1, KOH loading 0.5 wt. % and the reaction temperature was 58.30 °C. The physicochemical properties of optimized biodiesel met the requirements of the European Norm 14214, such as kinematic viscosity at 40 °C 4.57 mm/s2, the sulfur content 0.005 wt. %, and the density at 15 °C 889.3 kg/m3. This study also examined the accelerated oxidation of biodiesel and biodiesel/diesel blends under combined temperature and air effect at different periods of time while measuring their acidity. Results have shown that total acid number increased proportionally to the biodiesel content of the biodiesel/diesel blends from 0.5 mgKOH/g for B7 (7% (v/v) biodiesel and 93% (v/v) diesel) up to 2.8 mg KOH/g for B100 (100% biodiesel). The synthesized trans-esterified oil can be a potential alternative to petrodiesel, hence its application at an industrial scale. This work also reports some properties of crude glycerol (CG) derived from biodiesel from WFO. The glycerol yield (%), pH, water content (wt. %), density at 15 °C (g/cm3), and kinematic viscosity at 40 °C (mm2/s) was analyzed according to standard test methods.


2011 ◽  
Vol 7 (5) ◽  
pp. 698-704 ◽  
Author(s):  
İsa Rahmanlar ◽  
Sevil Yücel ◽  
Didem Özçimen

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
N. F. Nasir ◽  
W. R. W. Daud ◽  
S. K. Kamarudin ◽  
Z. Yaakob

Selectivity concept is essential in establishing the best operating conditions for attaining maximum production of the desired product. For complex reaction such as biodiesel fuel synthesis, kinetic studies of transesterification reaction have revealed the mechanism of the reaction and rate constants. The objectives of this research are to develop the kinetic parameters for determination of methyl esters and glycerol selectivity, evaluate the significance of the reverse reaction in transesterification reaction, and examine the influence of reaction characteristics (reaction temperature, methanol to oil molar ratio, and the amount of catalyst) on selectivity. For this study, published reaction rate constants of transesterification reaction were used to develop mathematical expressions for selectivities. In order to examine the base case and reversible transesterification, two calculation schemes (Case  1 and Case  2) were established. An enhanced selectivity was found in the base case of transesterification reaction. The selectivity was greatly improved at optimum reaction temperature (60°C), molar ratio (9 : 1), catalyst concentration (1.5 wt.%), and low free fatty acid feedstock. Further research might explore the application of selectivity for specifying reactor configurations.


2021 ◽  
Author(s):  
Afsaneh Alishahi ◽  
MEHRDAD NIAKOUSARI ◽  
Mohammad Taghi Golmakani

Abstract The ohmic-assisted esterification method was compared and contrasted with the conventional esterification method for biodiesel (fatty acid methyl esters) production from vegetable oil refinery waste containing high free fatty acids. The reaction variables were free fatty acid:methanol molar ratio (1:1, 1:5, 1:10, and 1:15), catalyst concentration (1%, 2%, and 3%) and reaction time (5, 30, and 60 min). By increasing the conversion yield of free fatty acids to fatty acid methyl esters, density increased while viscosity and refractive index decreased. Optimum reaction conditions were a molar ratio of 1:10 and a catalyst concentration of 3% after 60 min of esterification reaction, while having a 95.74% conversion yield. There was no significant difference between fatty acid methyl esters produced with ohmic-assisted esterification and conventional esterification methods in terms of fatty acid profile, physicochemical and heating properties. Meanwhile, energy consumption by the conventional esterification method was about 25% higher than that of ohmic-assisted esterification. In fact, ohmic-assisted esterification can be considered as a green, cost-effective alternative method for the production of biodiesel from vegetable oil refinery waste.


Author(s):  
Adeyinka S. Yusuff ◽  
Temitayo M. Azeez ◽  
Esther O. Babatunde

AbstractTo reveal the catalytic potential of abandoned naturally occurring material, we synthesized titania-termite hill composite (Ti-THC) via an incipient wetness impregnation route, characterized by various techniques and tested as a catalyst for transesterification of waste frying oil (WFO). The reusability of the prepared catalyst was also studied to evaluate its stability. The effects of reaction process parameters, such as temperature, time, catalyst loading and methanol/WFO molar ratio on fatty acid methyl ester (FAME) yield, were investigated using a central composite design approach. SEM result revealed pores formation on the catalyst surface, while XRD and EDX analyses confirmed successful insertion of titania into the aluminosilicate layer of the termite hill. The maximum FAME yield of 90.78% was obtained at optimum experimental conditions of 71.16 °C reaction temperature, 2.12 h reaction time, 1.03 wt.% catalyst loading and 9.96:1 methanol/WFO molar ratio. The catalyst still maintained its better stability after being reused for three reaction cycles.


2019 ◽  
Vol 59 (1) ◽  
pp. 88-97 ◽  
Author(s):  
Adeyinka S. Yusuff ◽  
Lekan T. Popoola

An optimization of the biodiesel production from a waste frying oil via a heterogeneous transesterification was studied. This present study is also aimed at investigating the catalytic ehaviour of the alumina supported eggshell (ASE) for the synthesis of biodiesel. A synthesized ASE catalyst, at various mixing ratios of alumina to eggshell, was investigated and exhibited a better activity for the reaction when the eggshell and alumina were mixed via incipient wetness impregnation in 2 : 1 proportion on a mass basis and calcined at 900 °C for 4 h. The as-synthesized catalyst was characterized by basicity, BET, SEM, EDX, and FTIR. The 2k factorial experimental design was employed for an optimization of process variables, which include catalyst loading, reaction time, methanol/oil molar ratio and reaction temperature and their effects on the biodiesel yield were studied. The optimization results showed that the reaction time has the highest percentage contribution of 40.139% while the catalyst loading contributes the least to the biodiesel production, as low as 1.233 %. The analysis of variance (ANOVA) revealed a high correlation coefficient (R2 = 0.9492) and the interaction between the reaction time and reaction temperature contributes significantly to the biodiesel production process with percentage contribution of 14.001 %, compared to other interaction terms. The biodiesel yield of 77.56% was obtained under the optimized factor combination of 4.0 wt.% catalyst loading, 120 min reaction time, 12 : 1 methanol/oil molar ratio and reaction temperature of 65 °C. The reusability study showed that the ASE catalyst could be reused for up to four cycles and the biodiesel produced under optimum conditions conformed to the ASTM standard.


Sign in / Sign up

Export Citation Format

Share Document