scholarly journals Designing and Developing Rechargeable Aluminium-Ion Battery using Graphite Coated Activated Charcoal Corncob as Cathode Material

2018 ◽  
Vol 14 (2) ◽  
pp. 99-104
Author(s):  
F. Fitriah ◽  
A. Doyan ◽  
S. Susilawati ◽  
S. Wahyuni

One of the renewable energy storage systems that can be used today is the aluminum ion battery. In this study, aluminum foil was used as anode, polyetylene polyprophylene (PE/PP) as separator, electrolyte from AlCl3/[EMIm]Cl and graphite coated corncob, an activated charcoal, as cathode. Coating method of cathode materials was done by mixing both graphite and activated charcoal with varied composition 1:0.5, 1:1, 1:1.5, and 1:3. The coating process began by mixing the graphite and corncob with ethanol as a solvent for six hours, then heating in an oven at 80 °C for three days, gradual drying in a furnace at 350 °C for five hours and sintering at 600 °C for six hours. From this research, SEM results showed that carbon particles were evenly distributed, with spherical particles. The spherical shape was the main requirement of carbon formation in order to produce high energy. Based on the results, battery potential was 2.54 V with average of optimal capacity at a ratio of graphite and corncob activated charcoal 1:1.5 was 83.067 mAh/g. The highest efficiency was also at a ratio of 1:1.5 of 97.20%, because at this ratio, there was an increasing in percentage of element C 91.74%, greater than the percentage of element C on the other three cathode samples.Salah satu sistem penyimpan energi terbarukan yang bisa digunakan saat ini adalah baterai ion aluminium. Pada penelitian ini digunakan aluminium foil sebagai anoda, polyetylene polyprophylene (PE/PP) sebagai separator, elektrolit menggunakan AlCl3/[EMIm]Cl dan grafit terlapisi arang aktif tongkol jagung sebagai bahan katoda. Metode pelapisan bahan katoda dilakukan dengan mencampurkan grafit dan arang aktif dengan variasi komposisi 1:0,5, 1:1,1:1,5 dan 1:3. Proses pelapisan diawali dengan pencampuran grafit dan arang aktif tongkol jagung dengan ethanol sebagai pelarut selama enam jam kemudian pemanasan di oven pada suhu 80oC selama tiga hari, pengeringan bertahap di furnace pada suhu 350oC selama lima jam dan sintering pada suhu 600oC selama enam jam. Dari penelitian ini didapatkan hasil SEM menunjukkan bahwa partikel karbon terdistribusi merata, dengan bentuk partikel bulat (sphare).Sampelberbentuk bulat atau sphere merupakan syarat utama pembentukan karbon supaya dapat menghasilkan energi tinggi. Berdasarkan hasil uji baterai diperoleh potensial sebesar 2,54 Volt dengan rata-rata kapasitas optimal terjadi pada rasio grafit dan arang aktif tongkol jagung 1:1,5 sebesar 83,067 mAh/g. Efisiensi tertinggi juga terjadi pada rasio 1:1,5 sebesar 97,20%. Hal ini karena pada rasio 1:1,5 terjadi peningkatan persentase unsur C yakni 91.74% lebih besar dari persentase unsur C pada tiga sampel katoda yang lainnya.

2005 ◽  
Vol 498-499 ◽  
pp. 198-204 ◽  
Author(s):  
Edval G. de Araújo ◽  
Jorge Alberto Soares Tenório

Considering its advantage of low density and favorable insulation properties, there are several applications for lightweight autoclaved aerated concrete of uniform cellular structure.The raw materials for the manufacturing of cellular concrete are Portland cement, finely grounded sand and lime. These are batched and mixed with water and metallic aluminum powder finely divided. There is a reaction between the aluminum powder and hydroxides forming millions of hydrogen bubbles throughout the mixture.The aluminum powder is the highest cost component, and the objective of this work is replacing it for another gas forming agent, like recycled foil.The foils are grinded in a high energy ball mill (attritor). Quartz sand is mixed with aluminum foil to reduce the time required for grinding, obtaining spherical particles and ensuring a uniform distribution of aluminum in the gas forming agent.The activity of this gas forming agent was determined by the gas volumetric technique. Average particle size and compressive strength of the samples were measured. The relationship between volume of the gas released during the reaction and milling conditions are presented, showing its viability for producing a high quality cellular concrete.


2006 ◽  
Vol 510-511 ◽  
pp. 290-293 ◽  
Author(s):  
Pyuck Pa Choi ◽  
Ji Soon Kim ◽  
O.T.H. Nguyen ◽  
Dae Hwan Kwon ◽  
Young Soon Kwon

Al-La-Ni-Fe alloys of three different compositions (Al82La10Ni4Fe4, Al85La9Ni3Fe3 and Al88La6Ni3Fe3) were prepared high-energy milling in a planetary ball-mill (AGO-2). Complete amorphization was observed for the Al82La10Ni4Fe4 alloy after milling for 350 h at a rotational speed of 300 rpm. In contrast, the Al85La9Ni3Fe3 and Al88La6Ni3Fe3 powders contained the FCC Al phase even for prolonged milling. The amorphization tendency was found to increase in the order of Al88La6Ni3Fe3 < Al85La9Ni3Fe3 < Al82La10Ni4Fe4, which may well be ascribed to the increasing atomic size mismatch of the constituent elements on La addition. DSC analyses of amorphous samples revealed two-stage crystallization processes for all three alloys, however, with strong variations in the thermal stability upon compositional changes. As observed by SEM, amorphous powders consisted of particles with nearly spherical shape and diameters ranging from 5 to 20 µm.


Author(s):  
Nguyen Trung Toan

This paper describes the formulation of two polymer-bonded explosives based on RDX (hexahydro-1,3,5- trinitro-1,3,5-triazine) and fluoroelastomer binders by the water-slurry coating method. The fluoroelastomers are poly(VDF-HFP) (vinylidene fluoride-hexafluoropropene copolymer) and poly(VDF-CTFE) (vinylidene fluoride-chlorotrifluoroethylene copolymer). It has been observed that the impact sensitivity and the friction sensitivity of PBX samples were significantly lower than that of the single RDX. Results also showed that two PBX formulations have high chemical stability, high energy characteristics, and equivalent to some PBX in the world. Finally, the compressive strength of these PBX compositions was found in the range of 8-12 MPa.


2018 ◽  
Vol 1 (1) ◽  
pp. 57-66
Author(s):  
Fenfen Fenda Florena ◽  
◽  
Dwindra Wilham Maulana ◽  
Ferry Faizal ◽  
Bambang Mukti Wibawa ◽  
...  

Spherical particles of Zn doped MgO were prepared by one-step spray pyrolysis method. The crystalline nature and particle size of the samples were characterized by X-ray diffraction analysis (XRD). The morphology of samples was studied by scanning electron microscope (SEM) and the presence of Zn in the sample was confirmed by energy dispersive X-ray analysis (EDX). The optical properties of the samples were investigated using photoluminescence spectroscopy (PL) analysis to obtain excitation and emission spectra of the samples. Results indicated that the doped MgO particles exhibited a cubic structure without hexagonal wurtzite structure as the Zn concentrations were increased. Spherical shape and porous particles are found with increasing of doping concentration. The optical band gap of MgO altered with the addition of doping concentration. A considerable redshift of about ~0.08 – 0.13 eV in the excitation spectra of 2.22 eV emission band was revealed in Zn doped MgO samples. It was highlighted that Zn doped MgO prepared by the spray pyrolysis generated emission at UV-Vis wavelength required for many applications.


Author(s):  
Mario Leoni ◽  
Lee Frederickson ◽  
Fletcher Miller

A new experimental set-up has been introduced at San Diego State University’s Combustion and Solar Energy Lab to study the thermal oxidation characteristics of in-situ generated carbon particles in air at high pressure. The study is part of a project developing a Small Particle Heat Exchange Receiver (SPHER) utilizing concentrated solar power to run a Brayton cycle. The oxidation data obtained will further be used in different existing and planned computer models in order to accurately predict reactor temperatures and flow behavior in the SPHER. The carbon black particles were produced by thermal decomposition of natural gas at 1250 °C and a pressure of 5.65 bar (82 psi). Particles were analyzed using a Diesel Particle Scatterometer (DPS) and scanning electron microscopy (SEM) and found to have a 310 nm average diameter. The size distribution and the complex index of refraction were measured and the data were used to calculate the specific extinction cross section γ of the spherical particles. The oxidation rate was determined using 2 extinction tubes and a tube furnace and the values were compared to literature. The activation energy of the carbon particles was determined to be 295.02 kJ/mole which is higher than in comparable studies. However, the oxidation of carbon particles bigger than 100 nm is hardly studied and almost no previous data is available at these conditions.


Crystals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 325
Author(s):  
Song ◽  
Lei ◽  
Zhong

: Spherical Fe50Ni50 alloy powders were fabricated via a novel route based on in-situ interface de-wetting between liquid Fe-Ni alloy and alumina. The obtained Fe50Ni50 alloy particles exhibit very good spherical shape according to SEM images. Furthermore, the cross-sectional SEM images show that there are no pores and bulk inclusions in the internal region of the spherical particles. The XRD results show a trace amount of the impurity alumina phase appearing in taenite phase. The size distribution agreed well with the SEM observation confirms that the alumina powders successfully segregated pre-alloy powders. As an incidental benefit, the surface alumina particles were treated as the electrical insulation coatings. The magnetic character shows that spherical Fe50Ni50 powders exhibit a good soft magnetic property even though with a slightly decreasing of saturation magnetization due to non-magnetic coatings. Our strategies provide a method to in-situ fabricate insulation coated Fe-Ni spherical alloy powders as magnetic powder core.


2012 ◽  
Vol 569 ◽  
pp. 172-175
Author(s):  
Peng Wang ◽  
Li Bo Fan ◽  
Meng Yuan Yang ◽  
Zhen Hua Zhang ◽  
Xin Bing Zhu ◽  
...  

A new hybrid film solar cell was made with a structure of Glass/ITO/PbS/P3HT/Al. PbS film was prepared by a simple solid-solid reaction and poly(3-hexylthiophene) (P3HT) film was obtained by a spin coating method. The solar cells are photosensitive in a large spectral range (extending from near infrared to high energy side regions). Without any special treatment, the cell with an area of 0.15 cm2 has shown values of open-circuit voltage (Voc) of 85 mV and fill factor (FF) of 0.33 under an illumination intensity of 100 mW/cm2.


2021 ◽  
Vol 9 (6) ◽  
pp. 1531-1543
Author(s):  
Sophie Bodek ◽  
Douglas J. Jerolmack

Abstract. As rocks are transported, they primarily undergo two breakdown mechanisms: fragmentation and chipping. Fragmentation is catastrophic breakup by fracture in the bulk – either by subcritical crack growth under repeated collisions, or from a single high-energy (supercritical) collision – and produces angular shards. Chipping is a distinct low-energy mechanism of impact attrition that involves shallow cracking; this process rounds river pebbles in a universal manner under bed-load transport. Despite its geophysical significance, the transition from chipping to fragmentation is not well studied. Here, we examine this transition experimentally by measuring the shape and mass evolution of concrete particles of varying strength, subject to repeated collisions in a rotating drum. For sufficiently strong particles, chipping occurred and was characterized by the following: attrition products were orders of magnitude smaller than the parent; attrition rate was insensitive to material strength; and particles experienced monotonic rounding toward a spherical shape. As strength decreased, we observed the onset of a subcritical cracking regime associated with fragmentation: mass of attrition products became larger and more varied; attrition rate was inversely proportional to material strength; and shape evolution fluctuated and became non-monotonic. Our results validate conceptual and numerical models for impact attrition: chipping follows “Sternberg's law” of exponential mass loss through time; for fragmentation, the lifetime of particles increases nonlinearly with material strength, consistent with “Basquin's law” of fatigue failure. We suggest that bedrock erosion models must be clarified to incorporate distinct attrition mechanisms, and that pebble or bedrock-channel shape may be utilized to deduce the operative mechanism in a given environment.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 218
Author(s):  
Rui Zhang ◽  
Esrat Jahan Rupa ◽  
Siwen Zheng ◽  
Jinnatun Nahar ◽  
Deok Chun Yang ◽  
...  

This study focused on developing Panos nanoemulsion (P-NE) and enhancing the anti-inflammatory efficacy for the treatment of inflammation. The effects of P-NE were evaluated in terms of Nitric oxide (NO production) in Lipopolysaccharide (LPS), induced RAW 264.7 cells, Reactive oxygen species (ROS) generation using Human Keratinocyte cells (HaCaT), and quantitative polymerase chain reaction (qPCR) analysis. Sea buckthorn oil, Tween 80, and span 80 were used and optimize the process. Panos extract (P-Ext) was prepared using the fermentation process. Further high-energy ultra-sonication was used for the preparation of P-NE. The developed nanoemulsion (NE) was characterized using different analytical methods. Field emission transmission electron microscopy (FE-TEM) analyzed the spherical shape and morphology. In addition, stability was analyzed by Dynamic light scattering (DLS) analysis, where particle size was analyzed 83 nm, and Zeta potential −28.20 ± 2 (mV). Furthermore, 90 days of stability was tested using different temperatures conditions where excellent stability was observed. P-NE are non-toxic in (HaCaT), and RAW264.7 cells up to 100 µg/mL further showed effects on ROS and NO production of the cells at 50 µg/mL. The qPCR analysis demonstrated the suppression of pro-inflammatory mediators for (Cox 2, IL-6, IL-1β, and TNF-α, NF-κB, Ikkα, and iNOS) gene expression. The prepared NE exhibited anti-inflammatory effects, demonstrating its potential as a safe and non-toxic nanomedicine.


2020 ◽  
Vol 73 (3) ◽  
pp. 361-369
Author(s):  
Elias Gomes Santos ◽  
Luiz Carlos da Silva Carvalho ◽  
André Luiz Amarante Mesquita ◽  
Luiz Moreira Gomes ◽  
Kelvin Alves Pinheiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document