Effect of calcium, pentagastrin, glucagon, and cimetidine on calcitonin and CEA secretion by C-cell carcinoma in vitro

1984 ◽  
Vol 104 (4_Supplb) ◽  
pp. S100-S101
Author(s):  
G. BOLLER ◽  
E. Rix ◽  
F. RAUE ◽  
H. SCHMIDT-GAYK
Keyword(s):  
1994 ◽  
Vol 111 (3) ◽  
pp. 189-196 ◽  
Author(s):  
C SNYDERMAN ◽  
I KLAPAN ◽  
M MILANOVICH ◽  
D HEO ◽  
R WAGNER ◽  
...  

2019 ◽  
Vol 19 (8) ◽  
pp. 631-640 ◽  
Author(s):  
Omel Baneen Qallandar ◽  
Faeza Ebrahimi ◽  
Farhadul Islam ◽  
Riajul Wahab ◽  
Bin Qiao ◽  
...  

Background: Co-culture of cancer cells with alveolar bone cells could modulate bone invasion and destructions. However, the mechanisms of interaction between oral squamous cell carcinoma (OSCC) and bone cells remain unclear. Objective: The aim of this study is to analyse the direct and indirect effects of OSCC cells in the stimulation of osteolytic activity and bone invasion. Methods: Direct co-culture was achieved by culturing OSCC (TCA8113) with a primary alveolar bone cell line. In the indirect co-culture, the supernatant of TCA8113 cells was collected to culture the alveolar bone cells. To assess the bone invasion properties, in vitro assays were performed. Results: The proliferation of co-cultured cancer cells was significantly (p<0.05) higher in comparison to the monolayer control cells. However, the proliferation rates were not significantly different between direct and indirect co-cultured cells with indirect co-cultured cells proliferated slightly more than the direct co-cultured cells. Invasion and migration capacities of co-cultured OSCC and alveolar bone cells enhanced significantly (p<0.05) when compared to that of control monolayer counterparts. Most importantly, we noted that OSCC cells directly co-cultured with alveolar bone cells stimulated pronounced bone collagen destruction. In addition, stem cells and epithelialmesenchymal transition markers have shown significant changes in their expression in co-cultured cells. Conclusion: In conclusion, the findings of this study highlight the importance of the interaction of alveolar bone cells and OSCC cells in co-culture setting in the pathogenesis of bone invasion. This may help in the development of potential future biotherapies for bone invasion in OSCC.


2019 ◽  
Vol 19 (2) ◽  
pp. 248-255 ◽  
Author(s):  
Ling Gao ◽  
Jianwei Dong ◽  
Nanyang Zhang ◽  
Zhanxian Le ◽  
Wenhao Ren ◽  
...  

Background:The Oral Squamous Cell Carcinoma (OSCC) is one of the most frequent cancer types. Failure of treatment of OSCC is potentially lethal because of local recurrence, regional lymph node metastasis, and distant metastasis. Chemotherapy plays a vital role through suppression of tumorigenesis. Cyclosporine A (CsA), an immunosuppressant drug, has been efficiently used in allograft organ transplant recipients to prevent rejection, and also has been used in a subset of patients with autoimmunity related disorders. The present study aims to investigate novel and effective chemotherapeutic drugs to overcome drug-resistance in the treatment of OSCC.Methods:Cells were incubated in the standard way. Cell viability was assayed using the MTT assay. Cell proliferation was determined using colony formation assay. The cell cycle assay was performed using flow cytometry. Apoptosis was assessed using fluorescence-activated cell sorting after stained by the Annexin V-fluorescein isothiocyanate (FITC). Cell migration and invasion were analyzed using wound healing assay and tranwell. The effect of COX-2, c-Myc, MMP-9, MMP-2, and NFATc1 protein expression was determined using Western blot analysis while NFATc1 mRNA expression was determined by RT-PCR.Results:In vitro studies indicated that CsA inhibited partial OSCC growth by inducing cell cycle arrest, apoptosis, and the migration and invasion of OSCC cells. We also demonstrated that CsA could inhibit the expression of NFATc1 and its downstream genes COX-2, c-Myc, MMP-9, and MMP-2 in OSCC cells. Furthermore, we analyzed the expression of NFATc1 in head and neck cancer through the Oncomine database. The data was consistent with the experimental findings.Conclusion:The present study initially demonstrated that CsA could inhibit the progression of OSCC cells and can mediate the signal molecules of NFATc1 signaling pathway, which has strong relationship with cancer development. That explains us CsA has potential to explore the possibilities as a novel chemotherapeutic drug for the treatment of OSCC.


2019 ◽  
Vol 13 (2) ◽  
pp. 114-128 ◽  
Author(s):  
Gayatri Patel ◽  
Bindu K.N. Yadav

Background: The purpose of this study was to formulate, characterize and conduct in vitro cytotoxicity of 5-fluorouracil loaded polymeric electrospun nanofibers for the treatment of skin cancer. The patents on electrospun nanofibers (US9393216B2), (US14146252), (WO2015003155A1) etc. helped in the selection of polymers and method for the preparation of nanofibers. Methods: In the present study, the fabrication of nanofibers was done using a blend of chitosan with polyvinyl alcohol and processed using the electrospinning technique. 5-fluorouracil with known chemotherapeutic potential in the treatment of skin cancer was used as a drug carrier. 24-1 fractional factorial screening design was employed to study the effect of independent variables like the concentration of the polymeric solution, applied voltage (kV), distance (cm), flow rate (ml / hr) on dependent variables like % entrapment efficiency and fiber diameter. Results: Scanning electron microscopy was used to characterize fiber diameter and morphology. Results showed that the fiber diameter of all batches was found in the range of 100-200 nm. The optimized batch results showed the fiber diameter of 162.7 nm with uniform fibers. The tensile strength obtained was 190±37 Mpa. Further in vitro and ex vivo drug release profile suggested a controlled release mechanism for an extended period of 24 hr. The 5-fluorouracil loaded electrospun nanofibers were found to decrease cell viability up to ≥50% over 24 hr, with the number of cells dropping by ~ 10% over 48 hr. As the cell viability was affected by the release of 5-fluorouracil, we believe that electrospun nanofibers are a promising drug delivery system for the treatment of Basal Cell Carcinoma (BCC) skin cancer. Conclusion: These results demonstrate the possibility of delivering 5-Fluorouracil loaded electrospun nanofiber to skin with enhanced encapsulation efficiency indicating the effectiveness of the formulation for the treatment of basal cell carcinoma type of skin cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jia-Huang Liu ◽  
Qi-Fei Wu ◽  
Jun-Ke Fu ◽  
Xiang-Ming Che ◽  
Hai-Jun Li

Obesity could increase the risk of esophageal squamous cell carcinoma (ESCC) and affect its growth and progression, but the mechanical links are unclear. The objective of the study was to explore the impact of obesity on ESCC growth and progression utilizing in vivo trials and cell experiments in vitro. Diet-induced obese and lean nude mice were inoculated with TE-1 cells, then studied for 4 weeks. Serum glucose, insulin, leptin, and visfatin levels were assayed. Sera of nude mice were obtained and then utilized to culture TE-1. MTT, migration and invasion assays, RT-PCR, and Western blotting were used to analyze endocrine effect of obesity on cell proliferation, migration, invasion, and related genes expression of TE-1. Obese nude mice bore larger tumor xenografts than lean animals, and were hyperglycemic and hyperinsulinemic with an elevated level of leptin and visfatin in sera, and also were accompanied by a fatty liver. As for the subcutaneous tumor xenograft model, tumors were more aggressive in obese nude mice than lean animals. Tumor weight correlated positively with mouse body weight, liver weight of mice, serum glucose, HOMA-IR, leptin, and visfatin. Obesity prompted significant TE-1 cell proliferation, migration, and invasion by endocrine mechanisms and impacted target genes. The expression of AMPK and p-AMPK protein decreased significantly ( P < 0.05 ); MMP9, total YAP, p-YAP, and nonphosphorylated YAP protein increased significantly ( P < 0.05 ) in the cells cultured with conditioned media and xenograft tumor from the obese group; the mRNA expression of AMPK decreased significantly ( P < 0.05 ); YAP and MMP9 mRNA expression increased significantly ( P < 0.05 ) in the cells exposed to conditioned media from the obese group. In conclusion, the altered adipokine milieu and metabolites in the context of obesity may promote ESCC growth in vivo; affect proliferation, migration, and invasion of ESCC cells in vitro; and regulate MMP9 and AMPK-YAP signaling pathway through complex effects including the endocrine effect.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 866
Author(s):  
Anca N. Cadinoiu ◽  
Delia M. Rata ◽  
Leonard I. Atanase ◽  
Cosmin T. Mihai ◽  
Simona E. Bacaita ◽  
...  

Topical liposomal drug formulations containing AS1411-aptamer conjugated liposomes were designed to deliver in a sustained way the 5-fluorouracil to the tumor site but also to increase the compliance of patients with basal cell carcinoma. The 5-fluorouracil penetrability efficiency through the Strat-M membrane and the skin irritation potential of the obtained topical liposomal formulations were evaluated in vitro and the Korsmeyer Peppas equation was considered as the most appropriate to model the drug release. Additionally, the efficiency of cytostatic activity for targeted antitumor therapy and the hemolytic capacity were performed in vitro. The obtained results showed that the optimal liposomal formulation is a crosslinked gel based on sodium alginate and hyaluronic acid containing AS1411-aptamer conjugated liposomes loaded with 5-fluorouracil, which appeared to have favorable biosafety effects and may be used as a new therapeutic approach for the topical treatment of basal cell carcinoma.


Author(s):  
Zhigeng Zou ◽  
Wei Zheng ◽  
Hongjun Fan ◽  
Guodong Deng ◽  
Shih-Hsin Lu ◽  
...  

Abstract Background Cancer stem cells (CSCs) are related to the patient’s prognosis, recurrence and therapy resistance in oesophageal squamous cell carcinoma (ESCC). Although increasing evidence suggests that aspirin (acetylsalicylic acid, ASA) could lower the incidence and improve the prognosis of ESCC, the mechanism(s) remains to be fully understood. Methods We investigated the role of ASA in chemotherapy/chemoprevention in human ESCC cell lines and an N-nitrosomethylbenzylamine-induced rat ESCC carcinogenesis model. The effects of combined treatment with ASA/cisplatin on ESCC cell lines were examined in vitro and in vivo. Sphere-forming cells enriched with putative CSCs (pCSCs) were used to investigate the effect of ASA in CSCs. Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) was performed to determine the alterations in chromatin accessibility caused by ASA in ESCC cells. Results ASA inhibits the CSC properties and enhances cisplatin treatment in human ESCC cells. ATAC-seq indicates that ASA treatment results in remarkable epigenetic alterations on chromatin in ESCC cells, especially their pCSCs, through the modification of histone acetylation levels. The epigenetic changes activate Bim expression and promote cell death in CSCs of ESCC. Furthermore, ASA prevents the carcinogenesis of NMBzA-induced ESCC in the rat model. Conclusions ASA could be a potential chemotherapeutic adjuvant and chemopreventive drug for ESCC treatment.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Wen Chen ◽  
Chenzhou Wu ◽  
Yafei Chen ◽  
Yuhao Guo ◽  
Ling Qiu ◽  
...  

AbstractC18 ceramide plays an important role in the occurrence and development of oral squamous cell carcinoma. However, the function of ceramide synthase 1, a key enzyme in C18 ceramide synthesis, in oral squamous cell carcinoma is still unclear. The aim of our study was to investigate the relationship between ceramide synthase 1 and oral cancer. In this study, we found that the expression of ceramide synthase 1 was downregulated in oral cancer tissues and cell lines. In a mouse oral squamous cell carcinoma model induced by 4-nitroquinolin-1-oxide, ceramide synthase 1 knockout was associated with the severity of oral malignant transformation. Immunohistochemical studies showed significant upregulation of PCNA, MMP2, MMP9, and BCL2 expression and downregulation of BAX expression in the pathological hyperplastic area. In addition, ceramide synthase 1 knockdown promoted cell proliferation, migration, and invasion in vitro. Overexpression of CERS1 obtained the opposite effect. Ceramide synthase 1 knockdown caused endoplasmic reticulum stress and induced the VEGFA upregulation. Activating transcription factor 4 is responsible for ceramide synthase 1 knockdown caused VEGFA transcriptional upregulation. In addition, mild endoplasmic reticulum stress caused by ceramide synthase 1 knockdown could induce cisplatin resistance. Taken together, our study suggests that ceramide synthase 1 is downregulated in oral cancer and promotes the aggressiveness of oral squamous cell carcinoma and chemotherapeutic drug resistance.


Gut ◽  
2021 ◽  
pp. gutjnl-2020-323276
Author(s):  
Jin Zhou ◽  
Zhong Wu ◽  
Zhouwei Zhang ◽  
Louisa Goss ◽  
James McFarland ◽  
...  

ObjectiveOesophageal squamous cell carcinoma (OSCC), like other squamous carcinomas, harbour highly recurrent cell cycle pathway alterations, especially hyperactivation of the CCND1/CDK4/6 axis, raising the potential for use of existing CDK4/6 inhibitors in these cancers. Although CDK4/6 inhibition has shown striking success when combined with endocrine therapy in oestrogen receptor positive breast cancer, CDK4/6 inhibitor palbociclib monotherapy has not revealed evidence of efficacy to date in OSCC clinical studies. Herein, we sought to elucidate the identification of key dependencies in OSCC as a foundation for the selection of targets whose blockade could be combined with CDK4/6 inhibition.DesignWe combined large-scale genomic dependency and pharmaceutical screening datasets with preclinical cell line models, to identified potential combination therapies in squamous cell cancer.ResultsWe identified sensitivity to inhibitors to the ERBB family of receptor kinases, results clearly extending beyond the previously described minority of tumours with EGFR amplification/dependence, specifically finding a subset of OSCCs with dual dependence on ERBB3 and ERBB2. Subsequently. we demonstrated marked efficacy of combined pan-ERBB and CDK4/6 inhibition in vitro and in vivo. Furthermore, we demonstrated that squamous lineage transcription factor KLF5 facilitated activation of ERBBs in OSCC.ConclusionThese results provide clear rationale for development of combined ERBB and CDK4/6 inhibition in these cancers and raises the potential for KLF5 expression as a candidate biomarker to guide the use of these agents. These data suggested that by combining existing Food and Drug Administration (FDA)-approved agents, we have the capacity to improve therapy for OSCC and other squamous cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chao Jing ◽  
Dandan Liu ◽  
Qingchuan Lai ◽  
Linqi Li ◽  
Mengqian Zhou ◽  
...  

Abstract Background Deubiquitinating enzymes (DUBs) play critical roles in various cancers by modulating functional proteins post-translationally. Previous studies have demonstrated that DUB Josephin Domain Containing 1 (JOSD1) is implicated in tumor progression, however, the role and mechanism of JOSD1 in head and neck squamous cell carcinoma (HNSCC) remain to be explored. In this study, we aimed to identify the clinical significance and function of JOSD1 in HNSCC. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were analyzed to find novel DUBs in HNSCC. Immunohistochemistry assay was performed to determine the expression of JOSD1 in our cohort of 42 patients suffered with HNSCC. Kaplan–Meier analysis was used to identify the correlation between JOSD1 and the prognosis of HNSCC patients. The regulation of BRD4 on JOSD1 was determined by using pharmacological inhibition and gene depletion. The in vitro and in vivo experiments were conducted to elucidate the role of JOSD1 in HNSCC. Results The results of IHC showed that JOSD1 was aberrantly expressed in HNSCC specimens, especially in the chemoresistant ones. The overexpression of JOSD1 indicated poor clinical outcome of HNSCC patients. Moreover, JOSD1 depletion dramatically impaired cell proliferation and colony formation, and promoted cisplatin-induced apoptosis of HNSCC cells in vitro. Additionally, JOSD1 suppression inhibited the tumor growth and improved chemosensitivity in vivo. The epigenetic regulator BRD4 contributed to the upregulation of JOSD1 in HNSCC. Conclusions These results demonstrate that JOSD1 functions as an oncogene in HNSCC progression, and provide a promising target for clinical diagnosis and therapy of HNSCC.


Sign in / Sign up

Export Citation Format

Share Document