scholarly journals Title Page Title: The role of DNA methylation in the accumulation of iridoid glycosides in Rehmannia glutinosa

Author(s):  
Tianyu Dong ◽  
Xiaoyan Wei ◽  
Qianting Qi ◽  
Peilei Chen ◽  
Yanqing Zhou ◽  
...  

Abstract Background: Epigenetic regulation plays a significant role in the accumulation of plant secondary metabolites. The terpenoids are the most abundant in the secondary metabolites of plants, iridoid glycosides belong to monoterpenoids which is one of the main medicinal components of R.glutinosa. At present, study on iridoid glycosides mainly focuses on its pharmacology, accumulation and distribution, while the mechanism of its biosynthesis and the relationship between DNA methylation and plant terpene biosynthesis are seldom reports. Results: The research showed that the expression of DXS, DXR, 10HGO, G10H, GPPS and accumulation of iridoid glycosides increased at first and then decreased with the maturity of R.glutinosa, and under different concentrations of 5-azaC, the expression of DXS, DXR, 10HGO, G10H, GPPS and the accumulation of total iridoid glycosides were promoted, the promotion effect of low concentration (15μM-50μM) was more significant, the content of genomic DNA 5mC decreased significantly, the DNA methylation status of R.glutinosa genomes was also changed. DNA demethylation promoted gene expression and increased the accumulation of iridoid glycosides, but excessive demethylation inhibited gene expression and decreased the accumulation of iridoid glycosides. Conclusion: The analysis of DNA methylation, gene expression, and accumulation of iridoid glycoside provides insights into accumulation of terpenoids in R.glutinosa and lays a foundation for future studies on the effects of epigenetics on the synthesis of secondary metabolites.


Author(s):  
Daniel M. Sapozhnikov ◽  
Moshe Szyf

AbstractAlthough associations between DNA methylation and gene expression were established four decades ago, the causal role of DNA methylation in gene expression remains unresolved. Different strategies to address this question were developed; however, all are confounded and fail to disentangle cause and effect. We developed here a highly effective new method using only deltaCas9(dCas9):gRNA site-specific targeting to physically block DNA methylation at specific targets in the absence of a confounding flexibly-tethered enzymatic activity, enabling examination of the role of DNA methylation per se in living cells. We show that the extensive induction of gene expression achieved by TET/dCas9-based targeting vectors is confounded by DNA methylation-independent activities, inflating the role of DNA methylation in the promoter region. Using our new method, we show that in several inducible promoters, the main effect of DNA methylation is silencing basal promoter activity. Thus, the effect of demethylation of the promoter region in these genes is small, while induction of gene expression by different inducers is large and DNA methylation independent. In contrast, targeting demethylation to the pathologically silenced FMR1 gene targets robust induction of gene expression. We also found that standard CRISPR/Cas9 knockout generates a broad unmethylated region around the deletion, which might confound interpretation of CRISPR/Cas9 gene depletion studies. In summary, this new method could be used to reveal the true extent, nature, and diverse contribution to gene regulation of DNA methylation at different regions.



2019 ◽  
Vol 31 (3) ◽  
pp. 509 ◽  
Author(s):  
Minli Yu ◽  
Dongfeng Li ◽  
Wanyan Cao ◽  
Xiaolu Chen ◽  
Wenxing Du

Ten–eleven translocation 1 (Tet1) is involved in DNA demethylation in primordial germ cells (PGCs); however, the precise regulatory mechanism remains unclear. In the present study the dynamics of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in developing PGCs and the role of Tet1 in PGC demethylation were analysed. Results show that 5mC levels dropped significantly after embryonic Day 4 (E4) and 5hmC levels increased reaching a peak at E5–E5.5. Interestingly, TET1 protein was highly expressed during E5 to E5.5, which showed a consistent trend with 5hmC. The expression of pluripotency-associated genes (Nanog, PouV and SRY-box 2 (Sox2)) and germ cell-specific genes (caveolin 1 (Cav1), piwi-like RNA-mediated gene silencing 1 (Piwi1) and deleted in azoospermia-like (Dazl)) was upregulated after E5, whereas the expression of genes from the DNA methyltransferase family was decreased. Moreover, the Dazl gene was highly methylated in early PGCs and then gradually hypomethylated. Knockdown of Tet1 showed impaired survival and proliferation of PGCs, as well as increased 5mC levels and reduced 5hmC levels. Further analysis showed that knockdown of Tet1 led to elevated DNA methylation levels of Dazl and downregulated gene expression including Dazl. Thus, this study reveals the dynamic epigenetic reprogramming of chicken PGCs invivo and the molecular mechanism of Tet1 in regulating genomic DNA demethylation and hypomethylation of Dazl during PGC development.



Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3549-3549
Author(s):  
Yang Xi ◽  
Velizar Shivarov ◽  
Gur Yaari ◽  
Steven Kleinstein ◽  
Matthew P. Strout

Abstract DNA methylation and demethylation at cytosine residues are epigenetic modifications that regulate gene expression associated with early cell development, somatic cell differentiation, cellular reprogramming and malignant transformation. While the process of DNA methylation and maintenance by DNA methyltransferases is well described, the nature of DNA demethylation remains poorly understood. The current model of DNA demethylation proposes modification of 5-methylcytosine followed by DNA repair-dependent cytosine substitution. Although there is debate on the extent of its involvement in DNA demethylation, activation-induced cytidine deaminase (AID) has recently emerged as an enzyme that is capable of deaminating 5-methylcytosine to thymine, creating a T:G mismatch which can be repaired back to cytosine through DNA repair pathways. AID is expressed at low levels in many tissue types but is most highly expressed in germinal center B cells where it deaminates cytidine to uracil during somatic hypermutation and class switch recombination of the immunoglobulin genes. In addition to this critical role in immune diversification, aberrant targeting of AID contributes to oncogenic point mutations and chromosome translocations associated with B cell malignancies. Thus, to explore a role for AID in DNA demethylation in B cell lymphoma, we performed genome-wide methylation profiling in BL2 and AID-deficient (AID-/-) BL2 cell lines (Burkitt lymphoma that can be induced to express high levels of AID). Using Illumina’s Infinium II DNA Methylation assay combined with the Infinium Human Methylation 450 Bead Chip, we analyzed over 450,000 methylation (CpG) sites at single nucleotide resolution in each line. BL2 AID-/- cells had a median average beta value (ratio of the methylated probe intensity to overall intensity) of 0.76 compared with 0.73 in AID-expressing BL2 cells (P < 0.00001), indicating a significant reduction in global methylation in the presence of AID. Using a delta average beta value of ≥ 0.3 (high stringency cut-off whereby a difference of 0.3 or more defines a CpG site as hypomethylated), we identified 5883 CpG sites in 3347 genes that were hypomethylated in BL2 versus BL2 AID-/- cells. Using the Illumina HumanHT-12 v4 Expression BeadChip and Genome Studio software, we then integrated gene expression and methylation profiles from both lines to generate a list of genes that met the following criteria: 1) contained at least 4 methylation sites within the first 1500 bases downstream of the primary transcriptional start site (TSS 1500; AID is most active in this region during somatic hypermutation); 2) average beta value increased by >0.1 in the TSS 1500 region in BL2 compared with BL2 AID-/- cells; and 3) down-regulated by >50% in BL2 compared with BL2 AID-/- cells. This analysis identified 31 candidate genes targeted for AID-dependent demethylation with consequent changes in gene expression. Interestingly, 15 of these genes have been reported to be bound by AID in association with stalled RNA polymerase II in activated mouse B cells. After validating methylation status in a subset of genes (APOBEC3B, BIN1, DEM1, GRN, GNPDA1) through bisulfite sequencing, we selected DEM1 for further analysis. DEM1 encodes an exonuclease involved in DNA repair and contains 16 CpG sites within its TSS1500, with only one site >50% methylated in BL2 cells compared with 8 of 16 in BL2 AID-/- cells. To assess a direct role for AID in DEM1 methylation status, a retroviral construct (AIDΔL189-L198ER) driving tamoxifen-inducible expression of a C-terminal deletion mutant of AID (increases time spent in the nucleus) was introduced into BL2 AID-/- cells. BL2, BL2 AID-/-, and BL2 AIDΔL189-L198ER cells were cultured continuously for 21 days in the presence of tamoxifen, 100 nM. Bisulfite sequencing of DEM1 TSS 1500 did not demonstrate any significant changes in methylation at day 7. However, at day 21, 13 of the 16 DEM1 TSS 1500 methylation sites in BL2 AIDΔL189-L198ER cells were found to have an increase in the ratio of unmethylated to methylated clones ~10-25% above that of BL2 AID-/- cells. By qPCR, this correlated with a 1.75-fold increase in DEM1 gene expression to levels that were equivalent to that seen in BL2 cells (P = 0.003). Although further investigations are needed, this data supports the notion that AID is able to regulate target gene expression in B cell malignancy through active DNA demethylation. Disclosures No relevant conflicts of interest to declare.



2015 ◽  
Vol 173 (2) ◽  
pp. 185-195 ◽  
Author(s):  
Masanori Murakami ◽  
Takanobu Yoshimoto ◽  
Kazuhiko Nakabayashi ◽  
Kyoichiro Tsuchiya ◽  
Isao Minami ◽  
...  

ObjectiveThe pathophysiology of aldosterone-producing adenomas (APA) has been investigated intensively through genetic and genomic approaches. However, the role of epigenetics in APA is not fully understood. In the present study, we explored the relationship between gene expression and DNA methylation status in APA.MethodsWe conducted an integrated analysis of transcriptome and methylome data of paired APA-adjacent adrenal gland (AAG) samples from the same patient. The adrenal specimens were obtained from seven Japanese patients with APA who underwent adrenalectomy. Gene expression and genome-wide CpG methylation profiles were obtained from RNA and DNA samples that were extracted from those seven paired tissues.ResultsMethylome analysis showed global CpG hypomethylation in APA relative to AAG. The integration of gene expression and methylation status showed that 34 genes were up-regulated with CpG hypomethylation in APA. Of these, three genes (CYP11B2, MC2R, and HPX) may be related to aldosterone production, and five genes (PRRX1, RAB38, FAP, GCNT2, and ASB4) are potentially involved in tumorigenesis.ConclusionThe present study is the first methylome analysis to compare APA with AAG in the same patients. Our integrated analysis of transcriptome and methylome revealed DNA hypomethylation in APA and identified several up-regulated genes with DNA hypomethylation that may be involved in aldosterone production and tumorigenesis.



Sarcoma ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Nikul Patel ◽  
Jennifer Black ◽  
Xi Chen ◽  
A. Mario Marcondes ◽  
William M. Grady ◽  
...  

The role of aberrant DNA methylation in Ewing sarcoma is not completely understood. The methylation status of 503 genes in 52 formalin-fixed paraffin-embedded EWS tumors and 3 EWS cell lines was compared to human mesenchymal stem cell primary cultures (hMSCs) using bead chip methylation analysis. Relative expression of methylated genes was assessed in 5-Aza-2-deoxycytidine-(5-AZA)-treated EWS cell lines and in a cohort of primary EWS samples and hMSCs by gene expression and quantitative RT-PCR. 129 genes demonstrated statistically significant hypermethylation in EWS tumors compared to hMSCs. Thirty-six genes were profoundly methylated in EWS and unmethylated in hMSCs. 5-AZA treatment of EWS cell lines resulted in upregulation of expression of hundreds of genes including 162 that were increased by at least 2-fold. The expression of 19 of 36 candidate hypermethylated genes was increased following 5-AZA. Analysis of gene expression from an independent cohort of tumors confirmed decreased expression of six of nineteen hypermethylated genes (AXL, COL1A1, CYP1B1, LYN, SERPINE1,) andVCAN. Comparing gene expression and DNA methylation analyses proved to be an effective way to identify genes epigenetically regulated in EWS. Further investigation is ongoing to elucidate the role of these epigenetic alterations in EWS pathogenesis.



Author(s):  
Federica Giambò ◽  
Gian Leone ◽  
Giuseppe Gattuso ◽  
Roberta Rizzo ◽  
Alessia Cosentino ◽  
...  

Environmental or occupational exposure to pesticides is considered one of the main risk factors for the development of various diseases. Behind the development of pesticide-associated pathologies, there are both genetic and epigenetic alterations, where these latter are mainly represented by the alteration in the expression levels of microRNAs and by the change in the methylation status of the DNA. At present, no studies have comprehensively evaluated the genetic and epigenetic alterations induced by pesticides; therefore, the aim of the present study was to identify modifications in gene miRNA expression and DNA methylation useful for the prediction of pesticide exposure. For this purpose, an integrated analysis of gene expression, microRNA expression, and DNA methylation datasets obtained from the GEO DataSets database was performed to identify putative genes, microRNAs, and DNA methylation hotspots associated with pesticide exposure and responsible for the development of different diseases. In addition, DIANA-miRPath, STRING, and GO Panther prediction tools were used to establish the functional role of the putative biomarkers identified. The results obtained demonstrated that pesticides can modulate the expression levels of different genes and induce different epigenetic alterations in the expression levels of miRNAs and in the modulation of DNA methylation status.



Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3848-3848
Author(s):  
Martina Kapalova ◽  
Pavel Burda ◽  
Karin Vargova ◽  
Filipp Savvulidi ◽  
Tomas Zikmund ◽  
...  

Abstract Abstract 3848 Introduction: 5-azacitidine (AZA) represents very promising albeit not fully efficient therapy for int-2 and high risk MDS patients. Molecules that interfere with AZA therapy are not known. In significant proportion of MDS patients, PU.1 gene is methylated at −17-kb-located upstream regulatory element (URE) where several key transcription factors regulate PU.1 expression. PU.1 represents major factor that controls normal myeloid differentiation. Methylated URE in MDS progenitors can be efficiently demethylated by AZA leading to restoration of cell differentiation capacity (Curik et al 2012). PU.1 gene contains several binding sites for transcription factor CTCF. CTCF represents very important modulator of gene expression, whose binding to DNA can be prevented by DNA methylation. We herein asked if CTCF regulates PU.1 and if so, whether its association with PU.1 gene coincides with DNA methylation status of MDS blasts. Methods: Human high risk MDS patient CD34+ progenitors and MDS-derived erytroleukaemia OCI-M2 and murine erythroleukaemia cell (MEL) lines were studied by RT-PCR, immunoblotting, and chromatin immunoprecipitation (ChIP) assays. Manipulation of gene expression was done by transfection of cDNA or siRNA. Results: We herein show that CTCF binding sites at PU.1 gene similarly to URE are severely methylated in CD34+ progenitors from high risk MDS patients and MDS-derived erytroleukaemia cell line, and as expected, AZA induced their rapid demethylation. Methylated CTCF binding sites are not occupied by CTCF. However upon AZA-mediated demethylation, CTCF is recruited to the binding sites at PU.1 gene as determined by ChIP. Our other data provided evidence that CTCF interacts with the ISWI ATPse SNF2H (SMARCA5). Indeed, the recruitment of CTCF at PU.1 gene in MDS/AML cells was coincident with recruitment of its interacting partner SMARCA5. In addition, SMARCA5 facilitates CTCF binding to the DNA as demonstrated at ICR locus (near H19 and Igf2 genes) upon siRNA-mediated downregulation of SMARCA5. To understand role of CTCF-SMARCA5 recruitment to the PU.1 gene and its effects on PU.1 expression we upregulated CTCF expression by transfecting an expression plasmid encoding CTCF cDNA and observed that upon increasing CTCF levels the PU.1 protein level was downregulated. Conversely, downregulation of SMARCA5 by siRNA caused upregulation of PU.1 levels. These data indicated that PU.1 is negatively regulated by CTCF and SMARCA5. Furthermore, inhibitory effects of CTCF and SMARCA5 on PU.1 expression were also demonstrated in presence of AZA in MDS cells following DNA demethylation of PU.1 gene. Conclusion: Our results indicate that CTCF and SMARCA5 are cooperating inhibitory factors to downregulate PU.1 and that AZA-mediated demethylation facilitates the CTCF-SMARCA5 binding to PU.1 gene in MDS patients. CTCF and SMARCA5 are novel factors that interfere with positive prodifferentiation effects of AZA. (Grant support: P305/12/1033, UNCE 204021, PRVOUK-P24/LF1/3, SVV-2012–264507, P301/12/P380, GAUK 251070 45410 and 251135 82210). Disclosures: No relevant conflicts of interest to declare.



2018 ◽  
Author(s):  
Alona Levy-Jurgenson ◽  
Xavier Tekpli ◽  
Vessela N. Kristensen ◽  
Zohar Yakhini

AbstractDNA methylation has been extensively linked to alterations in gene expression, playing a key role in the manifestation of multiple diseases, most notably cancer. For this reason, researchers have long been measuring DNA methylation in living organisms. The relationship between methylation and expression, and between methylation in different genomic regions is of great theoretical interest from a molecular biology perspective. Therefore, several models have been suggested to support the prediction of methylation status in samples. These models, however, have two main limitations: (a) they heavily rely on partially measured methylation levels as input, somewhat defeating the object as one is required to collect measurements from the sample of interest before applying the model; and (b) they are largely based on human mediated feature engineering, thus preventing the model from unveiling its own representations. To address these limitations we used deep learning, with an attention mechanism, to produce a general model that predicts DNA methylation for a given sample in any CpG position based solely on the sample's gene expression profile and the sequence surrounding the CpG.We show that our model is capable of generalizing to a completely separate test set of CpG positions and subjects. Depending on gene-CpG proximity conditions, our model can attain a Spearman correlation of up to 0.8 and MAE of 0.14 for thousands of CpG sites in the test data. We also identify and analyze several motifs and genes that our model suggests may be linked to methylation activity, such as Nodal and Hand1. Moreover, our approach, and most notably the use of attention mechanisms, offers a novel framework with which to extract valuable insights from gene expression data when combined with sequence information.The code and trained models are available at:https://github.com/YakhiniGroup/Methylation



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniel M. Sapozhnikov ◽  
Moshe Szyf

AbstractDespite four decades of research to support the association between DNA methylation and gene expression, the causality of this relationship remains unresolved. Here, we reaffirm that experimental confounds preclude resolution of this question with existing strategies, including recently developed CRISPR/dCas9 and TET-based epigenetic editors. Instead, we demonstrate a highly effective method using only nuclease-dead Cas9 and guide RNA to physically block DNA methylation at specific targets in the absence of a confounding flexibly-tethered enzyme, thereby enabling the examination of the role of DNA demethylation per se in living cells, with no evidence of off-target activity. Using this method, we probe a small number of inducible promoters and find the effect of DNA demethylation to be small, while demethylation of CpG-rich FMR1 produces larger changes in gene expression. This method could be used to reveal the extent and nature of the contribution of DNA methylation to gene regulation.



2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Julia C. Chen ◽  
Mardonn Chua ◽  
Raymond B. Bellon ◽  
Christopher R. Jacobs

Osteogenic lineage commitment is often evaluated by analyzing gene expression. However, many genes are transiently expressed during differentiation. The availability of genes for expression is influenced by epigenetic state, which affects the heterochromatin structure. DNA methylation, a form of epigenetic regulation, is stable and heritable. Therefore, analyzing methylation status may be less temporally dependent and more informative for evaluating lineage commitment. Here we analyzed the effect of mechanical stimulation on osteogenic differentiation by applying fluid shear stress for 24 hr to osteocytes and then applying the osteocyte-conditioned medium (CM) to progenitor cells. We analyzed gene expression and changes in DNA methylation after 24 hr of exposure to the CM using quantitative real-time polymerase chain reaction and bisulfite sequencing. With fluid shear stress stimulation, methylation decreased for both adipogenic and osteogenic markers, which typically increases availability of genes for expression. After only 24 hr of exposure to CM, we also observed increases in expression of later osteogenic markers that are typically observed to increase after seven days or more with biochemical induction. However, we observed a decrease or no change in early osteogenic markers and decreases in adipogenic gene expression. Treatment of a demethylating agent produced an increase in all genes. The results indicate that fluid shear stress stimulation rapidly promotes the availability of genes for expression, but also specifically increases gene expression of later osteogenic markers.



Sign in / Sign up

Export Citation Format

Share Document