Administration of a growth hormone bolus down-regulates gene-expression of the g0/g1 switch gene 2 (g0s2) in subcutaneous adipose tissue in healthy, obese men: a randomized, placebo-controlled, cross-over study

2019 ◽  
Author(s):  
Astrid Hjelholt ◽  
Niels Jessen ◽  
Mai Christiansen Arlien-Soborg ◽  
Steen Bonlokke Pedersen ◽  
Jenso Otto Lunde Jorgensen
2011 ◽  
Vol 20 (5) ◽  
pp. e153-e156 ◽  
Author(s):  
Clara Bambace ◽  
Mariassunta Telesca ◽  
Elena Zoico ◽  
Anna Sepe ◽  
Debora Olioso ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Marianthi Kalafati ◽  
Michael Lenz ◽  
Gökhan Ertaylan ◽  
Ilja C. W. Arts ◽  
Chris T. Evelo ◽  
...  

Background: Macrophages play an important role in regulating adipose tissue function, while their frequencies in adipose tissue vary between individuals. Adipose tissue infiltration by high frequencies of macrophages has been linked to changes in adipokine levels and low-grade inflammation, frequently associated with the progression of obesity. The objective of this project was to assess the contribution of relative macrophage frequencies to the overall subcutaneous adipose tissue gene expression using publicly available datasets.Methods: Seven publicly available microarray gene expression datasets from human subcutaneous adipose tissue biopsies (n = 519) were used together with TissueDecoder to determine the adipose tissue cell-type composition of each sample. We divided the subjects in four groups based on their relative macrophage frequencies. Differential gene expression analysis between the high and low relative macrophage frequencies groups was performed, adjusting for sex and study. Finally, biological processes were identified using pathway enrichment and network analysis.Results: We observed lower frequencies of adipocytes and higher frequencies of adipose stem cells in individuals characterized by high macrophage frequencies. We additionally studied whether, within subcutaneous adipose tissue, interindividual differences in the relative frequencies of macrophages were reflected in transcriptional differences in metabolic and inflammatory pathways. Adipose tissue of individuals with high macrophage frequencies had a higher expression of genes involved in complement activation, chemotaxis, focal adhesion, and oxidative stress. Similarly, we observed a lower expression of genes involved in lipid metabolism, fatty acid synthesis, and oxidation and mitochondrial respiration.Conclusion: We present an approach that combines publicly available subcutaneous adipose tissue gene expression datasets with a deconvolution algorithm to calculate subcutaneous adipose tissue cell-type composition. The results showed the expected increased inflammation gene expression profile accompanied by decreased gene expression in pathways related to lipid metabolism and mitochondrial respiration in subcutaneous adipose tissue in individuals characterized by high macrophage frequencies. This approach demonstrates the hidden strength of reusing publicly available data to gain cell-type-specific insights into adipose tissue function.


BMC Genomics ◽  
2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Angelina Passaro ◽  
Maria Agata Miselli ◽  
Juana Maria Sanz ◽  
Edoardo Dalla Nora ◽  
Mario Luca Morieri ◽  
...  

Nutrition ◽  
2019 ◽  
Vol 63-64 ◽  
pp. 92-97 ◽  
Author(s):  
Emad Yuzbashian ◽  
Golaleh Asghari ◽  
Mehdi Hedayati ◽  
Maryam Zarkesh ◽  
Parvin Mirmiran ◽  
...  

2000 ◽  
Vol 83 (04) ◽  
pp. 545-548 ◽  
Author(s):  
Vanessa Van Harmelen ◽  
Johan Hoffstedt ◽  
Per Lundquist ◽  
Hubert Vidal ◽  
Veronika Stemme ◽  
...  

SummaryHigh plasma plasminogen activator inhibitor-1 (PAI-1) activity is a frequent finding in obesity and adipose tissue has recently been suggested to be a source of circulating PAI-1 in humans. In the present study, differences in adipose tissue gene expression and protein secretion rate of PAI-1 between subcutaneous and visceral adipose tissue was analysed in specimens obtained from 22 obese individuals. The secretion rate of PAI-1 was two-fold higher in subcutaneous adipose tissue than in visceral adipose tissue (292 ± 50 vs 138 ± 24 ng PAI-1/107 cells, P <0.05). In accordance with the secretion data, subcutaneous adipose tissue contained about three-fold higher levels of PAI-1 mRNA than visceral adipose tissue (2.43 ± 0.37 vs 0.81 ± 0.12 attomole PAI-1 mRNA/µg total RNA, P <0.001). PAI-1 secretion from subcutaneous but not from visceral adipose tissue correlated significantly with cell size (r = 0.43, P <0.05). In summary, subcutaneous adipose tissue secreted greater amounts of PAI-1 and had a higher PAI-1 gene expression than visceral adipose tissue from the same obese individuals. Bearing in mind that subcutaneous adipose tissue is the largest fat depot these finding may be important for the coagulation abnormalities associated with obesity.


Sign in / Sign up

Export Citation Format

Share Document