scholarly journals Dietary restriction of mice on a high-fat diet induces substrate efficiency and improves metabolic health

2011 ◽  
Vol 47 (1) ◽  
pp. 81-97 ◽  
Author(s):  
Loes P M Duivenvoorde ◽  
Evert M van Schothorst ◽  
Annelies Bunschoten ◽  
Jaap Keijer

High energy intake and, specifically, high dietary fat intake challenge the mammalian metabolism and correlate with many metabolic disorders such as obesity and diabetes. However, dietary restriction (DR) is known to prevent the development of metabolic disorders. The current western diets are highly enriched in fat, and it is as yet unclear whether DR on a certain high-fat (HF) diet elicits similar beneficial effects on health. In this research, we report that HF-DR improves metabolic health of mice compared with mice receiving the same diet on anad libitumbasis (HF-AL). Already after five weeks of restriction, the serum levels of cholesterol and leptin were significantly decreased in HF-DR mice, whereas their glucose sensitivity and serum adiponectin levels were increased. The body weight and measured serum parameters remained stable in the following 7 weeks of restriction, implying metabolic adaptation. To understand the molecular events associated with this adaptation, we analyzed gene expression in white adipose tissue (WAT) with whole genome microarrays. HF-DR strongly influenced gene expression in WAT; in total, 8643 genes were differentially expressed between both groups of mice, with a major role for genes involved in lipid metabolism and mitochondrial functioning. This was confirmed by quantitative real-time reverse transcription-PCR and substantiated by increase in mitochondrial density in WAT of HF-DR mice. These results provide new insights in the metabolic flexibility of dietary restricted animals and suggest the development of substrate efficiency.

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3305 ◽  
Author(s):  
Yin Li ◽  
Xin Liu ◽  
Yu Fan ◽  
Baican Yang ◽  
Cheng Huang

Stellaria dichotoma L.is widely distributed in Ningxia and surrounding areas in northwestern China. Its root, Radix Stellariae (RS), has been used in herbal formulae for treating asthenic-fever, infection, malaria, dyspepsia in children and several other symptoms. This study investigated whether the RS extract (RSE) alleviates metabolic disorders. The results indicated that RSE significantly inhibited body weight gain in high-fat (HF)-diet-fed C57BL/6 mice, reduced fasting glucose levels, and improved insulin tolerance. Moreover, RSE increased the body temperature of the mice and the expression of uncoupling proteins and peroxisome proliferator-activated receptors in the white adipose tissue. Thus, RSE alleviated metabolic disorders in HF-diet-fed C57BL/6 mice by potentially activating UCP and PPAR signaling.


Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 99 ◽  
Author(s):  
Wang Ling ◽  
Shungeng Li ◽  
Xingcai Zhang ◽  
Yongquan Xu ◽  
Ying Gao ◽  
...  

: Probiotic dark tea (PDT) is a novel kind of dark tea produced by fresh albino tea leaves and fermented with specific probiotics. Our study demonstrates that PDT can ameliorate high-fat diet-induced overweight and lipid metabolic disorders and shows no acute or subacute toxicity in Sprague-Dawley (SD) rats. Daily intragastric administration of 5% PDT infusion for 14 days caused no obvious effect on general physiological features and behaviors of rats. Oral administration of 1%, 2%, and 3% of PDT infusion for six weeks had no influence on the biochemistry and histopathology of rats’ organs and blood, as well as the body weight and ratios of organ/body weight. To investigate its anti-obesity activity, SD rats were randomly divided into four groups, treated with normal diet + water (Group I), high-fat diet + water (Group II), high-fat diet + 3% traditional dark tea infusion (Group III), high-fat diet + 3% PDT infusion (Group IV). After six weeks, the body weight, serum total triacylglycerol (TG) and serum total cholesterol (TC) levels of rats in Group II were significantly increased and the high-density lipoprotein cholesterol (HDL) levels were significantly decreased compared with those in the other three groups. Both traditional dark tea and PDT treatment effectively counteracted the adverse effect of a high-fat diet in SD rats. These results suggest that PDT could be applied for the prevention of obesity, which ameliorates overweight and lipid metabolic disorders and which shows no acute or subacute toxicity.


2019 ◽  
Vol 122 (9) ◽  
pp. 1062-1072 ◽  
Author(s):  
Jian Sang ◽  
Hengxian Qu ◽  
Ruixia Gu ◽  
Dawei Chen ◽  
Xia Chen ◽  
...  

AbstractExcessive intake of high-energy diets is an important cause of most obesity. The intervention of rats with high-fat diet can replicate the ideal animal model for studying the occurrence of human nutritional obesity. Proteomics and bioinformatics analyses can help us to systematically and comprehensively study the effect of high-fat diet on rat liver. In the present study, 4056 proteins were identified in rat liver by using tandem mass tag. A total of 198 proteins were significantly changed, of which 103 were significantly up-regulated and ninety-five were significantly down-regulated. These significant differentially expressed proteins are primarily involved in lipid metabolism and glucose metabolism processes. The intake of a high-fat diet forces the body to maintain physiological balance by regulating these key protein spots to inhibit fatty acid synthesis, promote fatty acid oxidation and accelerate fatty acid degradation. The present study enriches our understanding of metabolic disorders induced by high-fat diets at the protein level.


2020 ◽  
Vol 7 (5) ◽  
pp. 881-896 ◽  
Author(s):  
Dongxu He ◽  
Aiqin Mao ◽  
Chang-Bo Zheng ◽  
Hao Kan ◽  
Ka Zhang ◽  
...  

Abstract The aorta, with ascending, arch, thoracic and abdominal segments, responds to the heartbeat, senses metabolites and distributes blood to all parts of the body. However, the heterogeneity across aortic segments and how metabolic pathologies change it are not known. Here, a total of 216 612 individual cells from the ascending aorta, aortic arch, and thoracic and abdominal segments of mouse aortas under normal conditions or with high blood glucose levels, high dietary salt, or high fat intake were profiled using single-cell RNA sequencing. We generated a compendium of 10 distinct cell types, mainly endothelial (EC), smooth muscle (SMC), stromal and immune cells. The distributions of the different cells and their intercommunication were influenced by the hemodynamic microenvironment across anatomical segments, and the spatial heterogeneity of ECs and SMCs may contribute to differential vascular dilation and constriction that were measured by wire myography. Importantly, the composition of aortic cells, their gene expression profiles and their regulatory intercellular networks broadly changed in response to high fat/salt/glucose conditions. Notably, the abdominal aorta showed the most dramatic changes in cellular composition, particularly involving ECs, fibroblasts and myeloid cells with cardiovascular risk factor-related regulons and gene expression networks. Our study elucidates the nature and range of aortic cell diversity, with implications for the treatment of metabolic pathologies.


1985 ◽  
Vol 107 (3) ◽  
pp. 421-427 ◽  
Author(s):  
P. M. Riis ◽  
A. Madsen

ABSTRACT Plasma thyroxine (T4) concentrations were measured during pregnancy and lactation in goats on diets with different energy concentrations to study the role of T4 secretion in metabolic adaptation to pregnancy and lactation. Thyroxine distribution space (the volume of fluid required to dissolve the total pool of circulating T4 at a concentration equal to that in the plasma) and secretion rates were determined by using 125I-labelled T4 at different stages of lactation and pregnancy. Plasma concentrations of T4 increased during lactation and reached maximum levels 4–5 months after giving birth. They then remained fairly constant for the following 2–3 months until the goats became pregnant again. Thyroxine concentrations decreased slightly during pregnancy and showed a sudden drop at the onset of lactation. Minimum concentrations were observed during the first 2–3 weeks of lactation after which time concentrations increased slowly. Average concentrations for goats on a low-energy diet were consistently lower than those in goats on a high-energy diet. The mean secretion rate was 10·4 nmol day−1 kg body wt−0·75. The distribution spaces were much lower than the total extracellular space. The average distribution space in non-pregnant and pregnant goats was 11 and 5·3% of the body weight respectively. The decrease in T4 secretion rate and T4 distribution space during pregnancy is considered to be part of a homeorhetic adaptation to the condition. The drop in T4 secretion rate at the onset of lactation appears to be a homeostatic adaptation to a decreased fuel supply, similar to the situation with fasting or energy malnutrition. J. Endocr. (1985) 107, 421–427


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 503-503
Author(s):  
Zhiji Huang ◽  
Yafang Ma ◽  
Chunbao Li

Abstract Objectives Kappa-Carrageenan(CGN) is a widely used food additive in the meat industry and a highly viscous soluble dietary fiber which can hardly be fermented. It has been shown to be able to regulate the energy metabolism and inhibit diet-induced obesity. However, the mechanism is not well understood. The purpose of this study is to investigate the mechanisms of κ-carrageenan to inhibit the body weight gain. Methods A high-fat diet incorporated with lard, pork protein and CGN (2% or 4%, w/w) was given to C57BL/6J mice for 90 days. The energy intake and weight changes were measured every three days. After the dietary intervention, mice were sacrificed, liver and epididymal adipose tissues were taken for real-time polymerase chain reaction (RT-qPCR) analysis. Results The CGN in the high-fat diet restricted weight gain by decreasing liver and adipose mass without inhibiting energy intake.  The genes involving energy expenditure such as Acox1, Acadl, CPT-1A and Sirt1 were upregulated in the mice fed with carrageenan. However, the genes responsible for lipid synthesis were not significantly different compared to the diet-induced obese model. Conclusions The anti-obesity effect of the CGN in high-fat diet could be highly related to the enhancement of energy expenditure through up-regulating the downstream genes which promote β-oxidation by increasing the Sirt1 gene expression in liver. Funding Sources Ministry of Science and Technology of the People's Republic of China (10000 Talent Project)


2020 ◽  
pp. 1-8
Author(s):  
Qihua Tan ◽  
Weilong Li ◽  
Jan Baumbach ◽  
Afsaneh Mohammadnejad ◽  
Jesper Lund ◽  
...  

Objective: The body mass index (BMI) measured as weight in relation to height is an important monitor for obesity and diabetes, with individual variation under control by genetic and environmental factors. In transcriptome-wide association studies on BMI, the genetic contribution calls for controlling of genetic confounding that affects both BMI and gene expression. We performed a global gene expression profiling of BMI on peripheral blood cells using monozygotic twins for efficient handling of genetic make-ups. Methods: We applied a generalized association method to genome-wide gene expression data on 229 pairs of monozygotic twins (age 56-80 years) for detecting diverse patterns of correlation between BMI and gene expression. Results: We detected seven probes associated with BMI with p<1e-04, among them two probes with p<1e05 (p=2.83e-06 AAK1; p=7.83e-06 LILRA3). In total, the analysis found 1579 probes with nominal p<0.05. Biological pathway analysis of enriched pathways found 50 KEGG and 45 Reactome pathways (FDR<0.05). The identified top functional pathways included immune function, JAK-STAT signalling, insulin signalling and regulation of energy metabolism. Conclusion: This transcriptome-wide association study using monozygotic twins and generalized correlation identified differentially expressed genes and a broad spectrum of enriched biological pathways that may implicate metabolic health.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Lingli Chen ◽  
Jiaqiang Huang ◽  
Yuanyuan Wu ◽  
Fazheng Ren ◽  
Xin Gen Lei

Abstract Objectives Metabolic function of selenoprotein V (SELENOV) remains unknown, although we previously showed a strong correlation of its gene expression with the high-fat diet-induced obesity in pigs. This study was conducted to explore the role and mechanism of SELENOV in body fat metabolism. Methods We applied the CRISPR/Cas9 gene-targeting deletion to generate Selenovknockout (KO) mice (C57BL/6 J background). Male KO and their wild-type (WT) (8 weeks old, n = 10 per genotype by treatment group) were fed a normal diet (NF, 10% calories coming from fat) or a high-fat diet (HF, 60% calories coming from fat) for 27 weeks. At the end, body weights and composition of mice were recorded, and tissues were collected to assay for gene expression and protein production related to lipid metabolism. Results Body weights of the KO mice fed the NF or HF diet were 16–19% higher (P < 0.05) than those of the WT mice. Total fat mass of the KO mice was 54% higher (P < 0.05) than the WT mice fed either diet, whereas total lean mass of the KO mice was 5 and 35% lower (P < 0.05) than that of WT mice fed the NF and HF diets, respectively. Gene expression of key enzymes (Fasn, Acaca, Dgat1, and Lpl) involved in lipogenesis was elevated (P < 0.05) in the white adipose tissue of the KO mice compared with the WT mice. In contrast, differences in gene expression of enzymes related to lipolysis and fatty acid oxidation (Atgl, Hsl, Ces1d, and Cpt1a) between the two genotypes were exactly the opposite (P < 0.05). Consistently, levels of proteins related to lipid accumulation (pACC, ACC, FAS, and LPL) were upregulated (P < 0.05) and proteins related to lipolysis (ATGL, HSL, and pHSL) were down-regulated (P < 0.05) in the KO mice compared with the WT mice. Conclusions Knockout of Selenov predisposed the male mice to elevated lipogenesis and attenuated lipolyis, leading to the body fat accumulation. This illustrated role and mechanism of SELENOV helps explain our previously-reported correlation between its gene expression and the high-fat diet-induced obesity in pigs. Funding Sources This research was supported in part by a NSFC grant #31,320,103,920.


Author(s):  
Y. Li ◽  
L. Jin ◽  
J. Yan ◽  
Y. Huang ◽  
H. Zhang ◽  
...  

Abstract Purpose Whether Tsukushi (TSK) can protect against high-fat diet (HFD)-induced obesity and improve glucose metabolism remains controversial. Serum levels of TSK in the population have not been reported until now. We assessed the association among TSK level, TSKU genotype, and metabolic traits in humans. Methods Associations between serum TSK levels and metabolic traits were assessed in 144 Han Chinese individuals. Loci in the TSKU gene region were further genotyped in 11,022 individuals. The association between the loci and serum TSK level was evaluated using the additive genetic model. The association between the loci and their metabolic traits in humans were also verified. Results Lower TSK levels were observed in obese subjects than in control subjects (median and interquartile range 17.78:12.07–23.28 vs. 23.81:12.54–34.56, P < 0.05). However, in obese subjects, TSK was positively associated with BMI (β ± SE: 0.63 ± 0.31, P = 0.049), visceral fat area (β ± SE: 12.15 ± 5.94, P = 0.011), and deterioration of glucose metabolism. We found that rs11236956 was associated with TSK level in obese subjects (β 95% CI 0.17, 0.07–0.26; P = 0.0007). There was also a significant association between rs11236956 and metabolic traits in our population. Conclusions Our findings showed that serum TSK levels were associated with metabolic disorders in obese subjects. We also identified rs11236956 to be associated with serum TSK levels in obese subjects and with metabolic disorders in the total population.


Sign in / Sign up

Export Citation Format

Share Document