scholarly journals SRC1 deficiency in hypothalamic arcuate nucleus increases appetite and body weight

2019 ◽  
Vol 62 (1) ◽  
pp. 37-46
Author(s):  
Qianqian Lu ◽  
Yuying Yang ◽  
Sheng Jia ◽  
Shaoqiang Zhao ◽  
Bin Gu ◽  
...  

Appetite is tightly controlled by neural and hormonal signals in animals. In general, steroid receptor coactivator 1 (SRC1) enhances steroid hormone signalling in energy balance and serves as a common coactivator of several steroid receptors, such as oestrogen and glucocorticoid receptors. However, the key roles of SRC1 in energy balance remain largely unknown. We first confirmed that SRC1 is abundantly expressed in the hypothalamic arcuate nucleus (ARC), which is a critical centre for regulating feeding and energy balance; it is further co-localised with agouti-related protein and proopiomelanocortin neurons in the arcuate nucleus. Interestingly, local SRC1 expression changes with the transition between sufficiency and deficiency of food supply. To identify its direct role in appetite regulation, we repressed SRC1 expression in the hypothalamic ARC using lentivirus shRNA and found that SRC1 deficiency significantly promoted food intake and body weight gain, particularly in mice fed with a high-fat diet. We also found the activation of the AMP-activated protein kinase (AMPK) signalling pathway due to SRC1 deficiency. Thus, our results suggest that SRC1 in the ARC regulates appetite and body weight and that AMPK signalling is involved in this process. We believe that our study results have important implications for recognising the overlapping and integrating effects of several steroid hormones/receptors on accurate appetite regulation in future studies.

2019 ◽  
Vol 26 (5) ◽  
pp. 558-566
Author(s):  
Xiao‐Qin Wan ◽  
Fan Zeng ◽  
Xu‐Feng Huang ◽  
He‐Qin Yang ◽  
Lan Wang ◽  
...  

Reproduction ◽  
2014 ◽  
Vol 147 (3) ◽  
pp. R53-R63 ◽  
Author(s):  
Julie-Ann P De Bond ◽  
Jeremy T Smith

Kisspeptin is vital for the neuroendocrine regulation of GNRH secretion. Kisspeptin neurons are now recognized as a central pathway responsible for conveying key homeostatic information to GNRH neurons. This pathway is likely to mediate the well-established link between energy balance and reproductive function. Thus, in states of severely altered energy balance (either negative or positive), fertility is compromised, as isKiss1expression in the arcuate nucleus. A number of metabolic modulators have been proposed as regulators of kisspeptin neurons including leptin, ghrelin, pro-opiomelanocortin (POMC), and neuropeptide Y (NPY). Whether these regulate kisspeptin neurons directly or indirectly will be discussed. Moreover, whether the stimulatory role of leptin on reproduction is mediated by kisspeptin directly will be questioned. Furthermore, in addition to being expressed in GNRH neurons, the kisspeptin receptor (Kiss1r) is also expressed in other areas of the brain, as well as in the periphery, suggesting alternative roles for kisspeptin signaling outside of reproduction. Interestingly, kisspeptin neurons are anatomically linked to, and can directly excite, anorexigenic POMC neurons and indirectly inhibit orexigenic NPY neurons. Thus, kisspeptin may have a direct role in regulating energy balance. Although data fromKiss1rknockout and WT mice found no differences in body weight, recent data indicate that kisspeptin may still play a role in food intake and glucose homeostasis. Thus, in addition to regulating reproduction, and mediating the effect of energy balance on reproductive function, kisspeptin signaling may also be a direct regulator of metabolism.


2002 ◽  
Vol 22 (14) ◽  
pp. 5027-5035 ◽  
Author(s):  
Su Qian ◽  
Howard Chen ◽  
Drew Weingarth ◽  
Myrna E. Trumbauer ◽  
Dawn E. Novi ◽  
...  

ABSTRACT Agouti-related protein (AgRP), a neuropeptide abundantly expressed in the arcuate nucleus of the hypothalamus, potently stimulates feeding and body weight gain in rodents. AgRP is believed to exert its effects through the blockade of signaling by α-melanocyte-stimulating hormone at central nervous system (CNS) melanocortin-3 receptor (Mc3r) and Mc4r. We generated AgRP-deficient (Agrp−/− ) mice to examine the physiological role of AgRP. Agrp−/− mice are viable and exhibit normal locomotor activity, growth rates, body composition, and food intake. Additionally, Agrp−/− mice display normal responses to starvation, diet-induced obesity, and the administration of exogenous leptin or neuropeptide Y (NPY). In situ hybridization failed to detect altered CNS expression levels for proopiomelanocortin, Mc3r, Mc4r, or NPY mRNAs in Agrp−/− mice. As AgRP and the orexigenic peptide NPY are coexpressed in neurons of the arcuate nucleus, we generated AgRP and NPY double-knockout (Agrp−/− ;Npy−/− ) mice to determine whether NPY or AgRP plays a compensatory role in Agrp−/− or NPY-deficient (Npy−/− ) mice, respectively. Similarly to mice deficient in either AgRP or NPY, Agrp−/− ;Npy−/− mice suffer no obvious feeding or body weight deficits and maintain a normal response to starvation. Our results demonstrate that neither AgRP nor NPY is a critically required orexigenic factor, suggesting that other pathways capable of regulating energy homeostasis can compensate for the loss of both AgRP and NPY.


1989 ◽  
Vol 257 (3) ◽  
pp. R550-R555 ◽  
Author(s):  
S. Rivest ◽  
J. Landry ◽  
D. Richard

The purpose of the present study was to investigate both the respective and interactive roles of exercise training and testosterone on energy balance. Male rats were divided into sedentary and exercise-trained groups. Each group formed was further divided into a sham-operated group, an orchidectomized group, or an orchidectomized group treated with testosterone. Rats were exercised on a motor-driven treadmill for 1 h/day over 28 consecutive days, after which rats were killed. Energy balance measurements, body composition analyses, and serum testosterone assay were then performed. The weight, protein content, and cytochrome-c oxidase activity of interscapular brown adipose tissue (IBAT) were also measured. Results indicate that total food intake, final body weight, and body weight gain were generally lower in exercise-trained rats than in sedentary animals. In orchidectomized rats treated with testosterone, gains of both fat and protein were lower in exercise-trained than in sedentary animals. There was no difference in metabolizable energy intake and body energy gain between trained and sedentary rats that underwent orchidectomy without replacement therapy. In orchidectomized groups of rats, energy gain was lower in trained rats that were treated with testosterone than in those that did not receive any treatment. Furthermore, in trained orchidectomized rats treated with testosterone, both energetic efficiency and energy density of body weight gain were lower than those of trained orchidectomized rats that were not treated. Finally, a significant reduction in IBAT weight was observed in exercise-trained animals, whereas neither exercise nor the various hormonal manipulations affected IBAT protein content and cytochrome-c oxidase activity.(ABSTRACT TRUNCATED AT 250 WORDS)


2007 ◽  
Vol 293 (3) ◽  
pp. R1003-R1012 ◽  
Author(s):  
ChuanFeng Wang ◽  
Eric Bomberg ◽  
Charles Billington ◽  
Allen Levine ◽  
Catherine M. Kotz

Recent studies show that brain-derived neurotrophic factor (BDNF) decreases feeding and body weight after peripheral and ventricular administration. BDNF mRNA and protein, and its receptor tyrosine kinase B (TrkB) are widely distributed in the hypothalamus and other brain regions. However, there are few reports on specific brain sites of actions for BDNF. We evaluated the effect of BDNF in the hypothalamic paraventricular nucleus (PVN) on feeding. BDNF injected unilaterally or bilaterally into the PVN of food-deprived and nondeprived rats significantly decreased feeding and body weight gain within the 0- to 24-h and 24- to 48-h postinjection intervals. Effective doses producing inhibition of feeding behavior did not establish a conditioned taste aversion. PVN BDNF significantly decreased PVN neuropeptide Y (NPY)-induced feeding at 1, 2, and 4 h following injection. BDNF administration in the PVN abolished food-restriction-induced NPY gene expression in the hypothalamic arcuate nucleus. In conclusion, BDNF in the PVN significantly decreases food intake and body weight gain, suggesting that the PVN is an important site of action for BDNF in its effects on energy metabolism. Furthermore, BDNF appears to interact with NPY in its anorectic actions, although a direct effect on NPY remains to be established.


2008 ◽  
Vol 295 (1) ◽  
pp. E78-E84 ◽  
Author(s):  
Sabine Strassburg ◽  
Stefan D. Anker ◽  
Tamara R. Castaneda ◽  
Lukas Burget ◽  
Diego Perez-Tilve ◽  
...  

Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), is the only circulating agent to powerfully promote a positive energy balance. Such action is mediated predominantly by central nervous system pathways controlling food intake, energy expenditure, and nutrient partitioning. The ghrelin pathway may therefore offer therapeutic potential for the treatment of catabolic states. However, the potency of the endogenous hormone ghrelin is limited due to a short half-life and the fragility of its bioactivity ensuring acylation at serine 3. Therefore, we tested the metabolic effects of two recently generated GHS-R agonists, BIM-28125 and BIM-28131, compared with ghrelin. All agents were administered continuously for 1 mo in doses of 50 and 500 nmol·kg−1·day−1 using implanted subcutaneous minipumps in rats. High-dose treatment with single agonists or ghrelin increased body weight gain by promoting fat mass, whereas BIM-28131 was the only one also increasing lean mass significantly. Food intake increased during treatment with BIM-28131 or ghrelin, whereas no effects on energy expenditure were detected. With the lower dose, only BIM-28131 had a significant effect on body weight. This also held true when the compound was administered by subcutaneous injection three times/day. No symptoms or signs of undesired effects were observed in any of the studies or treated groups. These results characterize BIM-28131 as a promising GHS-R agonist with an attractive action profile for the treatment of catabolic disease states such as cachexia.


2021 ◽  
Author(s):  
Hui Yu ◽  
Marcelo Rubinstein ◽  
Malcolm J Low

Proopiomelanocortin (POMC) neurons of the hypothalamic arcuate nucleus are essential to regulate food intake and energy balance. However, the ontogenetic transcriptional programs that specify the identity and functioning of these neurons are poorly understood. Here, we use scRNAseq to define the transcriptomes characterizing POMC progenitors in the developing hypothalamus and their transition into mature neurons. Our data show that Pomc-expressing neurons originate from two independent developmental pathways expressing distinct combinations of transcription factors. The predominant cluster, featured by high levels of Pomc and Prdm12 transcripts represents the precursors of canonical arcuate POMC neurons. Additional clusters of progenitors expressing lower levels of Pomc mature into different neuronal phenotypes characterized by distinct combinations of transcription factors, neuropeptides, processing enzymes, cell surface and nuclear receptors. We conclude that the genetic programs specifying the identity and differentiation of arcuate POMC neurons are diverse and generate a heterogeneous repertoire of neuronal phenotypes early in development.


1992 ◽  
Vol 262 (6) ◽  
pp. R1106-R1110 ◽  
Author(s):  
S. Okada ◽  
D. A. York ◽  
G. A. Bray

The effect of mifepristone (RU 486), a blocker of type II glucocorticoid receptors on the development of obesity that follows the feeding of a high-fat (HF) diet to Osborne-Mendel (OM) rats, has been investigated. OM rats fed a HF diet gained more weight and had larger retroperitoneal and parametrial fat pads than OM rats fed a high-carbohydrate low-fat (LF) diet. RU 486 (30 mg.kg-1.day-1) for 14 days completely reversed the body weight gain and the increase in fat pad size of OM rats fed a HF diet. RU 486 had no effect on body weight of OM rats fed a LF diet, but did reduce fat pad weights. The data suggest that type II glucocorticoid receptor activity modulates body fat deposition and is essential for the development of obesity, although a minor role for progestin receptor activity cannot be ruled out.


Sign in / Sign up

Export Citation Format

Share Document