scholarly journals eNOS activation and NO function: Pregnancy adaptive programming of capacitative entry responses alters nitric oxide (NO) output in vascular endothelium–new insights into eNOS regulation through adaptive cell signaling

2011 ◽  
Vol 210 (3) ◽  
pp. 243-258 ◽  
Author(s):  
D S Boeldt ◽  
F X Yi ◽  
I M Bird

In pregnancy, vascular nitric oxide (NO) production is increased in the systemic and more so in the uterine vasculature, thereby supporting maximal perfusion of the uterus. This high level of functionality is matched in the umbilical vein, and in corresponding disease states such as pre-eclampsia, reduced vascular responses are seen in both uterine artery and umbilical vein. In any endothelial cell, NO actually produced by endothelial NO synthase (eNOS) is determined by the maximum capacity of the cell (eNOS expression levels), eNOS phosphorylation state, and the intracellular [Ca2+]iconcentration in response to circulating hormones or physical forces. Herein, we discuss how pregnancy-specific reprogramming of NO output is determined as much by pregnancy adaptation of [Ca2+]isignaling responses as it is by eNOS expression and phosphorylation. By examining the changes in [Ca2+]isignaling responses from human hand vein endothelial cells, uterine artery endothelial cells, and human umbilical vein endothelial cells in (where appropriate) nonpregnant, normal pregnant, and pathological pregnant (pre-eclamptic) state, it is clear that pregnancy adaptation of NO output occurs at the level of sustained phase ‘capacitative entry’ [Ca2+]iresponse, and the adapted response is lacking in pre-eclamptic pregnancies. Moreover, gap junction function is an essential permissive regulator of the capacitative response and impairment of NO output results from any inhibitor of gap junction function, or capacitative entry using TRPC channels. Identifying these [Ca2+]isignaling mechanisms underlying normal pregnancy adaptation of NO output not only provides novel targets for future treatment of diseases of pregnancy but may also apply to other common forms of hypertension.

2021 ◽  
Vol 14 (6) ◽  
pp. 577
Author(s):  
Chin-Feng Hsuan ◽  
Thung-Lip Lee ◽  
Wei-Kung Tseng ◽  
Chau-Chung Wu ◽  
Chi-Chang Chang ◽  
...  

The vascular nitric oxide (NO) system has a protective effect in atherosclerosis. NO is generated from the conversion of L-arginine to L-citrulline by the enzymatic action of endothelial NO synthase (eNOS). Compounds with the effect of enhancing eNOS expression are considered to be candidates for the prevention of atherosclerosis. In this study, extracts from the aerial, root, and whole plant of Glossogyne tenuifolia (GT) were obtained with ethanol, n-hexane, ethyl acetate (EA), and methanol extraction, respectively. The effects of these GT extracts on the synthesis of NO and the expression of eNOS in human umbilical vein endothelial cells (HUVECs) were investigated. NO production was determined as nitrite by colorimetry, following the Griess reaction. The treatment of HUVECs with EA extract from the root of GT and n-hexane, methanol, and ethanol extract from the aerial, root, and whole plant of GT increased NO production in a dose-dependent manner. When at a dose of 160 μg/mL, NO production increased from 0.9 to 18.4-fold. Among these extracts, the methanol extract from the root of GT (R/M GTE) exhibited the most potent effect on NO production (increased by 18.4-fold). Furthermore, using Western blot and RT–PCR analysis, treatment of HUVECs with the R/M GTE increased both eNOS protein and mRNA expression. In addition, Western blot analysis revealed that the R/M GTE increased eNOS phosphorylation at serine1177 as early as 15 min after treatment. The chemical composition for the main ingredients was also performed by HPLC analysis. In conclusion, the present study demonstrated that GT extracts increased NO production in HUVECs and that the R/M GTE increased NO production via increasing eNOS expression and activation by phosphorylation of eNOS at serine1177.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Chenyi Ling ◽  
Marc D. Cook ◽  
Heather Grimm ◽  
Maitha Aldokhayyil ◽  
Dulce Gomez ◽  
...  

Background. C-reactive protein (CRP) is an independent biomarker of systemic inflammation and a predictor of future cardiovascular disease (CVD). More than just a pure bystander, CRP directly interacts with endothelial cells to decrease endothelial nitric oxide synthase (eNOS) expression and bioactivity, decrease nitric oxide (NO) production, and increase the release of vasoconstrictors and adhesion molecules. Race is significantly associated with CRP levels and CVD risks. With aerobic exercise, the vessel wall is exposed to chronic high laminar shear stress (HiLSS) that shifts the endothelium phenotype towards an anti-inflammatory, antioxidant, antiapoptotic, and antiproliferative environment. Thus, the purpose of this study was to assess the racial differences concerning the CRP-induced effects in endothelial cells and the potential role of HiLSS in mitigating these differences. Methods. Human umbilical vein endothelial cells (HUVECs) from four African American (AA) and four Caucasian (CA) donors were cultured and incubated under the following conditions: (1) static control, (2) CRP (10 μg/mL, 24 hours), (3) CRP receptor (FcγRIIB) inhibitor followed by CRP stimulation, (4) HiLSS (20 dyne/cm2, 24 hours), and (5) HiLSS followed by CRP stimulation. Results. AA HUVECs had significantly higher FcγRIIB receptor expression under both basal and CRP incubation conditions. Blocking FcγRIIB receptor significantly attenuated the CRP-induced decrements in eNOS expression only in AA HUVECs. Finally, HiLSS significantly counteracted CRP-induced effects. Conclusion. Understanding potential racial differences in endothelial function is important to improve CVD prevention. Our results shed light on FcγRIIB receptor as a potential contributor to racial differences in endothelial function in AA.


2021 ◽  
Vol 22 (19) ◽  
pp. 10287
Author(s):  
Chih-Hsien Wu ◽  
Yi-Lin Chiu ◽  
Chung-Yueh Hsieh ◽  
Guo-Shiang Tsung ◽  
Lian-Shan Wu ◽  
...  

Cilostazol was suggested to be beneficial to retard in-stent atherosclerosis and prevent stent thrombosis. However, the mechanisms responsible for the beneficial effects of cilostazol are not fully understood. In this study, we attempted to verify the mechanism of the antithrombotic effect of cilostazol. Human umbilical vein endothelial cells (HUVECs) were cultured with various concentrations of cilostazol to verify its impact on endothelial cells. KLF2, silent information regulator transcript-1 (SIRT1), endothelial nitric oxide synthase (eNOS), and endothelial thrombomodulin (TM) expression levels were examined. We found cilostazol significantly activated KLF2 expression and KLF2-related endothelial function, including eNOS activation, Nitric oxide (NO) production, and TM secretion. The activation was regulated by SIRT1, which was also stimulated by cilostazol. These findings suggest that cilostazol may be capable of an antithrombotic and vasculoprotective effect in endothelial cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Shasha Xing ◽  
Xiaoyan Yang ◽  
Wenjing Li ◽  
Fang Bian ◽  
Dan Wu ◽  
...  

Salidroside (SAL) is an active component ofRhodiola roseawith documented antioxidative properties. The purpose of this study is to explore the mechanism of the protective effect of SAL on hydrogen peroxide- (H2O2-) induced endothelial dysfunction. Pretreatment of the human umbilical vein endothelial cells (HUVECs) with SAL significantly reduced the cytotoxicity brought by H2O2. Functional studies on the rat aortas found that SAL rescued the endothelium-dependent relaxation and reduced superoxide anion (O2∙-) production induced by H2O2. Meanwhile, SAL pretreatment inhibited H2O2-induced nitric oxide (NO) production. The underlying mechanisms involve the inhibition of H2O2-induced activation of endothelial nitric oxide synthase (eNOS), adenosine monophosphate-activated protein kinase (AMPK), and Akt, as well as the redox sensitive transcription factor, NF-kappa B (NF-κB). SAL also increased mitochondrial mass and upregulated the mitochondrial biogenesis factors, peroxisome proliferator-activated receptor gamma-coactivator-1alpha (PGC-1α), and mitochondrial transcription factor A (TFAM) in the endothelial cells. H2O2-induced mitochondrial dysfunction, as demonstrated by reduced mitochondrial membrane potential (Δψm) and ATP production, was rescued by SAL pretreatment. Taken together, these findings implicate that SAL could protect endothelium against H2O2-induced injury via promoting mitochondrial biogenesis and function, thus preventing the overactivation of oxidative stress-related downstream signaling pathways.


2007 ◽  
Vol 293 (1) ◽  
pp. C458-C467 ◽  
Author(s):  
Jian-Zhong Sheng ◽  
Andrew P. Braun

The contribution of small-conductance (SKCa) and intermediate-conductance Ca2+-activated K+ (IKCa) channels to the generation of nitric oxide (NO) by Ca2+-mobilizing stimuli was investigated in human umbilical vein endothelial cells (HUVECs) by combining single-cell microfluorimetry with perforated patch-clamp recordings to monitor agonist-evoked NO synthesis, cytosolic Ca2+ transients, and membrane hyperpolarization in real time. ATP or histamine evoked reproducible elevations in NO synthesis and cytosolic Ca2+, as judged by 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM) and fluo-3 fluorescence, respectively, that were tightly associated with membrane hyperpolarizations. Whereas evoked NO synthesis was unaffected by either tetraethylammonium (10 mmol/l) or BaCl2 (50 μmol/l) + ouabain (100 μmol/l), depleting intracellular Ca2+ stores by thapsigargin or removing external Ca2+ inhibited NO production, as did exposure to high (80 mmol/l) external KCl. Importantly, apamin and charybdotoxin (ChTx)/ triarylmethane (TRAM)-34, selective blockers SKCa and IKCa channels, respectively, abolished both stimulated NO synthesis and membrane hyperpolarization and decreased evoked Ca2+ transients. Apamin and TRAM-34 also inhibited an agonist-induced outwardly rectifying current characteristic of SKCa and IKCa channels. Under voltage-clamp control, we further observed that the magnitude of agonist-induced NO production varied directly with the degree of membrane hyperpolarization. Mechanistically, our data indicate that SKCa and IKCa channel-mediated hyperpolarization represents a critical early event in agonist-evoked NO production by regulating the influx of Ca2+ responsible for endothelial NO synthase activation. Moreover, it appears that the primary role of agonist-induced release of intracellular Ca2+ stores is to trigger the opening of both KCa channels along with Ca2+ entry channels at the plasma membrane. Finally, the observed inhibition of stimulated NO synthesis by apamin and ChTx/TRAM-34 demonstrates that SKCa and IKCa channels are essential for NO-mediated vasorelaxation.


1998 ◽  
Vol 274 (3) ◽  
pp. H1054-H1058 ◽  
Author(s):  
John D. Hood ◽  
Cynthia J. Meininger ◽  
Marina Ziche ◽  
Harris J. Granger

Vascular endothelial growth factor (VEGF) is an endothelium-specific secreted protein that potently stimulates vasodilation, microvascular hyperpermeability, and angiogenesis. Nitric oxide (NO) is also reported to modulate vascular tone, permeability, and capillary growth. Therefore, we hypothesized that VEGF might regulate endothelial production of NO. The production of nitrogen oxides by human umbilical vein endothelial cells (HUVECs) was measured after 1, 12, 24, and 48 h of incubation with VEGF. VEGF treatment resulted in both an acute (1 h) and chronic (>24 h) stimulation of NO production. Furthermore, Western and Northern blotting revealed a VEGF-elicited, dose-dependent increase in the cellular content of endothelial cell nitric oxide synthase (ecNOS) message and protein that may account for the chronic upregulation of NO production elicited by VEGF. Finally, endothelial cells pretreated with VEGF for 24 h and subsequently exposed to A-23187 for 1 h produced NO at approximately twice the rate of cells that were not pretreated with VEGF. We conclude that VEGF upregulates ecNOS enzyme and elicits a biphasic stimulation of endothelial NO production.


2002 ◽  
Vol 88 (12) ◽  
pp. 1060-1065 ◽  
Author(s):  
Ana Pérez-Ruiz ◽  
Ramón Montes ◽  
Francisco Velasco ◽  
Chary López-Pedrera ◽  
José Páramo ◽  
...  

SummaryThe increase in nitric oxide (NO) production in lipopolysaccharide (LPS)-induced sepsis is thought to contribute to the development of shock. However, NO could also play an antithrombotic role. Little is known about the modulating effect of NO on the endothelial overexpression and production of tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) occurring in endotoxemia. We analyzed the effect of N(G)-nitro-L-arginine-methyl-ester (L-NAME), an inhibitor of NO synthases, and S-nitroso-N-acetyl-D,L-penicillamine (SNAP), a NO donor, on the expression and synthesis of TF and PAI-1 by LPS-challenged human umbilical vein endothelial cells (HUVEC): L-NAME enhanced the increase in TF mRNA and antigen levels (P <0.05) observed in LPS-treated HUVEC; SNAP down-regulated the LPSinduced TF increment (p <0.05). However, no effects of NO on regulation of the LPS-dependent increase in PAI-1 could be seen. Thus, NO could play an antithrombotic role in sepsis by down-regulating the endothelial overexpression and production of TF.


2011 ◽  
Vol 300 (4) ◽  
pp. H1182-H1193 ◽  
Author(s):  
Fu-Xian Yi ◽  
Derek S. Boeldt ◽  
Ronald R. Magness ◽  
Ian M. Bird

Pregnancy is a time of greatly increased uterine blood flow to meet the needs of the growing fetus. Increased uterine blood flow is also observed in the follicular phase of the ovarian cycle. Simultaneous fura-2 and 4,5-diaminofluoresceine (DAF-2) imaging reveals that cells of the uterine artery endothelium (UA Endo) from follicular phase ewes produce marginally more nitric oxide (NO) in response to ATP than those from luteal phase. However, this is paralleled by changes in NO in response to ionomycin, suggesting this is solely due to higher levels of endothelial nitric oxide synthase (eNOS) protein in the follicular phase. In contrast, UA Endo from pregnant ewes (P-UA Endo) produces substantially more NO (4.62-fold initial maximum rate, 2.56-fold overall NO production) in response to ATP, beyond that attributed to eNOS levels alone (2.07-fold initial maximum rate, 1.93-fold overall with ionomycin). The ATP-stimulated intracellular free calcium concentration ([Ca2+]i) response in individual cells of P-UA Endo comprises an initial peak followed by transient [Ca2+]i bursts that are limited in the luteal phase, not altered in the follicular phase, but are sustained in pregnancy and observed in more cells. Thus pregnancy adaptation of UA Endo NO output occurs beyond the level of eNOS expression and likely through associated [Ca2+]i cell signaling changes. Preeclampsia is a condition of a lack of UA Endo adaptation and poor NO production/vasodilation and is associated with elevated placental VEGF165. While treatment of luteal NP-UA Endo and P-UA Endo with VEGF165 acutely stimulates a very modest [Ca2+]i and NO response, subsequent stimulation of the same vessel with ATP results in a blunted [Ca2+]i and an associated NO response, with P-UA Endo reverting to the response of luteal NP-UA Endo. This demonstrates the importance of adaptation of cell signaling over eNOS expression in pregnancy adaptation of uterine endothelial function and further implicates VEGF in the pathophysiology of preeclampsia.


2002 ◽  
Vol 103 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Raj C. THURAISINGHAM ◽  
Norman B. ROBERTS ◽  
Mark WILKES ◽  
David I. NEW ◽  
A. Claudio MENDES-RIBEIRO ◽  
...  

Results regarding the nitric oxide (NO) system in uraemia are contradictory. l-Arginine, the precursor of NO, is also metabolized by arginase to form ornithine and urea. In the present study, endothelial NO production and arginine metabolism in uraemia were assessed. In addition an in vivo model was used to examine excess consumption of NO in uraemia. NO and amino acid measurements were made from basal and stimulated (by bradykinin) uraemic and control endothelial cells. Reverse-transcriptase PCR was used to assess endothelial NO synthase (eNOS) and inducible NOS (iNOS) expression. Finally, aortae of uraemic rats were stained for nitrotyrosine (a marker of peroxynitrite). Basal uraemic cells produced more NO than the control cells. l-Arginine levels were greater in uraemic (supernatants/cells), but ornithine levels were higher in control (supernatants/cells). Following stimulation, NO levels in supernatants were similar, but the rise in NO production was greater in control compared with uraemic cells; l-arginine levels still remained higher in uraemic supernatants/cells. Differences in ornithine concentration (supernatants/cells) disappeared following bradykinin stimulation, due to a rise in ornithine levels in the uraemic group. There was no difference in eNOS expression, nor was iNOS detected in either group. Only aortae from uraemic rats showed evidence for nitrotyrosine staining. These studies demonstrated increased basal NO release in uraemic endothelial cells, perhaps by inhibition of arginase and hence diversion of arginine to the NO pathway. The increased NO produced under basal conditions may be inactive due to excessive consumption, resulting in peroxynitrite formation. Interestingly, bradykinin appears to restore arginase activity in uraemia, resulting in normalization of NO production.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Zhijun OU ◽  
Hua-Ming Li ◽  
Zhi-Wei Mo ◽  
Yue-Ming Peng ◽  
Yan Li ◽  
...  

Introduction: Previous studies showed that high density lipoprotein (HDL) can stimulate angiogenesis. However, the mechanisms by which HDL promotes angiogenesis remains unclear. Hypothesize: HDL may promote angiogenesis by regulating miRNAs expression. Methods: HDL was isolated from healthy subjects. Human umbilical vein endothelial cells (HUVECs) were cultured with vehicle or HDL (100 μg/ml), and the differential miRNAs expression were indentified by miRNA array and verified by qRT-PCR. HUVECs were treated with vehicle or HDL (100 μg/ml) with or without miRNAs mimic, endothelial cells proliferation, migration and tube formation were detected. The production of nitric oxide(NO) was measured. The expression and phosphorylation of endothelial nitric oxide synthase (eNOS) was determined. Results: The miRNAs profile of HDL-treated HUVECs is significantly different from control group. HDL significantly downregulated miR-24-3p expression. HDL significantly promoted HUVECs proliferation, migration and tube formation. HDL also significantly stimulated NO production and up-regulated the expression and phosphorylation of eNOS. However, HDL did not stimulated HUVECs proliferation, migration, tube formation and NO production as well as the expression and phosphorylation of eNOS after pretreated with miR-24-3p mimic. Conclusions: HDL can promote angiogenesis by suppressing miR-24-3p expression.


Sign in / Sign up

Export Citation Format

Share Document