scholarly journals Pioglitazone does not improve insulin signaling in mice with GH over-expression

2013 ◽  
Vol 219 (2) ◽  
pp. 109-117 ◽  
Author(s):  
Adam Gesing ◽  
Andrzej Bartke ◽  
Michal M Masternak

Type 2 diabetes and obesity are very serious health problems in both developed and developing countries. An increased level of GH is known to promote insulin resistance. Transgenic (Tg) mice over-expressing bovine GH are short-living and characterized, among other traits, by hyperinsulinemia and increased insulin resistance in comparison with normal (N) mice. Pioglitazone (PIO) is a member of the thiazolidinediones – a group of insulin-sensitizing drugs that are selective agonists of peroxisome proliferator-activated receptor gamma (PPARγ). The aim of the study was to analyze the effects of PIO on the insulin-signaling pathway in Tg and N mice. Plasma levels of insulin and glucose as well as hepatic levels of proteins involved in insulin signaling were analyzed by ELISA or western blot methods. Treatment with PIO decreased plasma level of glucose in N mice only. Similarly, PIO increased insulin sensitivity (expressed as the relative insulin sensitivity index; RISI) only in N mice. In the liver, PIO decreased the phosphorylation of insulin receptor substrate-1 (IRS1) at a serine residue (Ser307-pS-IRS1), which inhibits insulin action, and had a tendency to increase tyrosine phosphorylation of IRS2 (Tyr-pY-IRS2) only in N mice but did not affect either of these parameters in Tg mice. Levels of total and phosphorylated mammalian target of rapamycin were increased in Tg mice. Moreover, the level of AKT2 was decreased by PIO in N mice only. In conclusion, the lack of improvement of insulin sensitivity in insulin-resistant Tg mice during PIO treatment indicates that chronically elevated GH levels can inhibit the beneficial effects of PIO on insulin signaling.

2011 ◽  
Vol 300 (1) ◽  
pp. E243-E251 ◽  
Author(s):  
Kevin E. Yarasheski ◽  
W. Todd Cade ◽  
E. Turner Overton ◽  
Kristin E. Mondy ◽  
Sara Hubert ◽  
...  

The prevalence and incidence of insulin resistance and type 2 diabetes mellitus (DM) are higher in people treated for human immunodeficiency virus-1 (HIV) infection than in the general population. Identifying safe and effective interventions is a high priority. We evaluated whether the peroxisome proliferator-activated receptor-γ agonist pioglitazone with exercise training improves central and peripheral insulin sensitivity more than pioglitazone alone in HIV-infected adults with insulin resistance and central adiposity. Forty-four HIV-infected adults with baseline insulin resistance and central adiposity were randomly assigned to 4 mo of pioglitazone (30 mg/day) with or without supervised, progressive aerobic, and resistance exercise training (1.5–2 h/day, 3 days/wk). The hyperinsulinemic euglycemic clamp was used to evaluate alterations in central and peripheral insulin sensitivity. Thirty-nine participants completed the study. Hepatic insulin sensitivity improved similarly in both groups. Exercise training augmented the beneficial effects of pioglitazone on peripheral insulin sensitivity. Greater improvements in peripheral insulin sensitivity were associated with reductions in total body and limb adipose content rather than increases in limb adiposity or pioglitazone-induced increases in adiponectin concentration. We conclude that supplementing pioglitazone with increased physical activity improved insulin sensitivity more effectively than pioglitazone alone in HIV-infected adults with insulin resistance and central adiposity. Pioglitazone alone did not significantly increase limb adipose content. Potential cardiovascular benefits of these interventions in HIV need investigation.


Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1992 ◽  
Author(s):  
Firas H. Bazzari ◽  
Dalaal M. Abdallah ◽  
Hanan S. El-Abhar

Insulin resistance is a major risk factor for Alzheimer’s disease (AD). Chenodeoxycholic acid (CDCA) and synthetic Farnesoid X receptor (FXR) ligands have shown promising outcomes in ameliorating insulin resistance associated with various medical conditions. This study aimed to investigate whether CDCA treatment has any potential in AD management through improving insulin signaling. Adult male Wistar rats were randomly allocated into three groups and treated for six consecutive weeks; control (vehicle), AD-model (AlCl3 50 mg/kg/day i.p) and CDCA-treated group (AlCl3 + CDCA 90 mg/kg/day p.o from day 15). CDCA improved cognition as assessed by Morris Water Maze and Y-maze tests and preserved normal histological features. Moreover, CDCA lowered hippocampal beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and amyloid-beta 42 (Aβ42). Although no significant difference was observed in hippocampal insulin level, CDCA reduced insulin receptor substrate-1 phosphorylation at serine-307 (pSer307-IRS1), while increased protein kinase B (Akt) activation, glucose transporter type 4 (GLUT4), peroxisome proliferator-activated receptor gamma (PPARγ) and glucagon-like peptide-1 (GLP-1). Additionally, CDCA activated cAMP response element-binding protein (CREB) and enhanced brain-derived neurotrophic factor (BDNF). Ultimately, CDCA was able to improve insulin sensitivity in the hippocampi of AlCl3-treated rats, which highlights its potential in AD management.


Life ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 127 ◽  
Author(s):  
Federica Vinciguerra ◽  
Andrea Tumminia ◽  
Roberto Baratta ◽  
Alfredo Ferro ◽  
Salvatore Alaimo ◽  
...  

Obesity represents a major risk factor for metabolic disorders, but some individuals, “metabolically healthy” (MHO), show less clinical evidence of these complications, in contrast to “metabolically unhealthy” (MUO) individuals. The aim of this cross-sectional study is to assess the prevalence of the MHO phenotype in a cohort of 246 overweight/obese Italian children and adolescents, and to evaluate their characteristics and the role of insulin resistance. Homeostasis model assessment–insulin resistance (HOMA-IR), insulin sensitivity index (ISI), insulinogenic index (IGI) and disposition index (DI) were all calculated from the Oral Glucose Tolerance Test (OGTT). MHO was defined by either: (1) HOMA-IR < 2.5 (MHO-IRes), or (2) absence of the criteria for metabolic syndrome (MHO-MetS). The MHO prevalence, according to MHO-MetS or MHO-IRes criteria, was 37.4% and 15.8%, respectively. ISI was the strongest predictor of the MHO phenotype, independently associated with both MHO-IRes and MHO-MetS. The MHO-MetS group was further subdivided into insulin sensitive or insulin resistant on the basis of HOMA-IR (either < or ≥ 2.5). Insulin sensitive MHO-MetS patients had a better metabolic profile compared to both insulin resistant MHO-MetS and MUO-MetS individuals. These data underscore the relevance of insulin sensitivity to identifying, among young individuals with overweight/obesity, the ones who have a more favorable metabolic phenotype.


PPAR Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Sakil Kulkarni ◽  
Jiansheng Huang ◽  
Eric Tycksen ◽  
Paul F. Cliften ◽  
David A. Rudnick

Pioglitazone (Pio) is a thiazolidinedione (TZD) insulin-sensitizing drug whose effects result predominantly from its modulation of the transcriptional activity of peroxisome proliferator-activated-receptor-gamma (PPARγ). Pio is used to treat human insulin-resistant diabetes and also frequently considered for treatment of nonalcoholic steatohepatitis (NASH). In both settings, Pio’s beneficial effects are believed to result primarily from its actions on adipose PPARγ activity, which improves insulin sensitivity and reduces the delivery of fatty acids to the liver. Nevertheless, a recent clinical trial showed variable efficacy of Pio in human NASH. Hepatocytes also express PPARγ, and such expression increases with insulin resistance and in nonalcoholic fatty liver disease (NAFLD). Furthermore, mice that overexpress hepatocellular PPARγ and Pio-treated mice with extrahepatic PPARγ gene disruption develop features of NAFLD. Thus, Pio’s direct impact on hepatocellular gene expression might also be a determinant of this drug’s ultimate influence on insulin resistance and NAFLD. Previous studies have characterized Pio’s PPARγ-dependent effects on hepatic expression of specific adipogenic, lipogenic, and other metabolic genes. However, such transcriptional regulation has not been comprehensively assessed. The studies reported here address that consideration by genome-wide comparisons of Pio’s hepatic transcriptional effects in wildtype (WT) and liver-specific PPARγ-knockout (KO) mice given either control or high-fat (HFD) diets. The results identify a large set of hepatic genes for which Pio’s liver PPARγ-dependent transcriptional effects are concordant with its effects on RXR-DNA binding in WT mice. These data also show that HFD modifies Pio’s influence on a subset of such transcriptional regulation. Finally, our findings reveal a broader influence of Pio on PPARγ-dependent hepatic expression of nuclear genes encoding mitochondrial proteins than previously recognized. Taken together, these studies provide new insights about the tissue-specific mechanisms by which Pio affects hepatic gene expression and the broad scope of this drug’s influence on such regulation.


2011 ◽  
Vol 89 (10) ◽  
pp. 743-751 ◽  
Author(s):  
Adil El Midaoui ◽  
Calin Lungu ◽  
Hui Wang ◽  
Lingyun Wu ◽  
Caroline Robillard ◽  
...  

This study sought to determine the impact of α-lipoic acid (LA) on superoxide anion (O2•–) production and peroxisome proliferator-activated receptor-α (PPARα) expression in liver tissue, plasma free fatty acids (FFA), and aortic remodeling in a rat model of insulin resistance. Sprague–Dawley rats (50–75 g) were given either tap water or a drinking solution containing 10% D-glucose for 14 weeks, combined with a diet with or without LA supplement. O2•– production was measured by lucigenin chemiluminescence, and PPAR-α expression by Western blotting. Cross-sectional area (CSA) of the aortic media and lumen and number of smooth muscle cells (SMC) were determined histologically. Glucose increased systolic blood pressure (SBP), plasma levels of glucose and insulin, and insulin resistance (HOMA index). All of these effects were attenuated by LA. Whereas glucose had no effect on liver PPAR-α protein level, it decreased plasma FFA. LA decreased the aortic and liver O2•– production, body weight, and plasma FFA levels in control and glucose-treated rats. Liver PPAR-α protein levels were increased by LA, and negatively correlated with plasma FFA. Medial CSA was reduced in all glucose-treated rats, and positively correlated with plasma FFA but not with SBP or aortic O2•– production. Glucose also reduced aortic lumen area, so that the media-to-lumen ratio remained unchanged. The ability of LA to lower plasma FFA appears to be mediated, in part, by increased hepatic PPAR-α expression, which may positively affect insulin resistance. Glucose-fed rats may serve as a unique model of aortic atrophic remodeling in hypertension and early metabolic syndrome.


2010 ◽  
Vol 35 (2) ◽  
pp. 151-162 ◽  
Author(s):  
Scott P. Naples ◽  
Sarah J. Borengasser ◽  
R. Scott. Rector ◽  
Grace M. Uptergrove ◽  
E. Matthew Morris ◽  
...  

Rats selected artificially to be low-capacity runners (LCR) possess a metabolic syndrome phenotype that is worsened by a high-fat diet (HFD), whereas rats selected to be high-capacity runners (HCR) are protected against HFD-induced obesity and insulin resistance. This study examined whether protection against, or susceptibility to, HFD-induced insulin resistance in the HCR–LCR strains is associated with contrasting metabolic adaptations in skeletal muscle. HCR and LCR rats (generation 20; n = 5–6; maximum running distance ∼1800 m vs. ∼350 m, respectively (p < 0.0001)) were divided into HFD (71.6% energy from fat) or normal chow (NC) (16.7% energy from fat) groups for 7 weeks (from 24 to 31 weeks of age). Skeletal muscle (red gastrocnemius) mitochondrial-fatty acid oxidation (FAO), mitochondrial-enzyme activity, mitochondrial-morphology, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), and peroxisome proliferator-activated receptor δ (PPARδ) expression and insulin sensitivity (intraperitoneal glucose tolerance tests) were measured. The HFD caused increased adiposity and reduced insulin sensitivity only in the LCR and not the HCR strain. Isolated mitochondria from the HCR skeletal muscle displayed a 2-fold-higher rate of FAO on NC, but both groups increased FAO following HFD. PGC-1α mRNA expression and superoxide dismutase activity were significantly reduced with the HFD in the LCR rats, but not in the HCR rats. PPARδ expression did not differ between strains or dietary conditions. These results do not provide a clear connection between protection of insulin sensitivity and HFD-induced adaptive changes in mitochondrial function or transcriptional responses but do not dismiss the possibility that elevated mitochondrial FAO in the HCR may play a protective role.


2009 ◽  
Vol 296 (5) ◽  
pp. E1120-E1132 ◽  
Author(s):  
Christelle Veyrat-Durebex ◽  
Xavier Montet ◽  
Manlio Vinciguerra ◽  
Asllan Gjinovci ◽  
Paolo Meda ◽  
...  

The inbred Lou/C rat, originating from the Wistar strain, has been described as a model of resistance to diet-induced obesity, but little is known about its metabolism. Since this knowledge could provide some clues about the etiology of obesity/insulin resistance, this study aimed at characterizing glucose and lipid metabolism in Lou/C vs. Wistar rats. This was achieved by performing glucose and insulin tolerance tests, euglycemic hyperinsulinemic clamps, and characterization of intracellular insulin signaling in skeletal muscle. Substrate-induced insulin secretion was evaluated using perfused pancreas and isolated islets. Finally, body fat composition and the expression of various factors involved in lipid metabolism were determined. Body weight and caloric intake were lower in Lou/C than in Wistar rats, whereas food efficiency was similar. Improved glucose tolerance of Lou/C rats was not related to increased insulin output but was related to improved insulin sensitivity/responsiveness in the liver and in skeletal muscles. In the latter tissue, this was accompanied by improved insulin signaling, as suggested by higher activation of the insulin receptor and of the Akt/protein kinase B pathway. Fat deposition was markedly lower in Lou/C than in Wistar rats, especially in visceral adipose tissue. In the inguinal adipose depot, expression of uncoupling protein-1 was detected in Lou/C but not in Wistar rats, in keeping with a higher expression of peroxisome proliferator-activated receptor-γ coactivator-1 in these animals. The Lou/C rat is a valuable model of spontaneous food restriction with associated improved insulin sensitivity. Independently from its reduced caloric intake, it also exhibits a preferential channeling of nutrients toward utilization rather than storage.


PPAR Research ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
Francesco Negro

Insulin resistance and type 2 diabetes are associated with hepatitis C virus infection. A wealth of clinical and experimental data suggests that the virus is directly interfering with the insulin signalling in hepatocytes. In the case of at least one viral genotype (the type 3a), insulin resistance seems to be directly mediated by the downregulation of the peroxisome proliferator-activated receptorγ. Whether and how this interaction may be manipulated pharmacologically, in order to improve the responsiveness to antivirals of insulin resistant chronic hepatitis C, patients remain to be fully explored.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Jose T Muratalla ◽  
Samuel M Lee ◽  
Pablo Remon-Ruiz ◽  
Gregory H Norris ◽  
Jose Cordoba-Chacon

Abstract Pparg is a nuclear receptor that regulates glucose and lipid metabolism. Thiazolidinediones (TZD) are PPARG agonists that may reduce hepatic steatosis through their effects in adipose tissue. However, some studies suggest that expression and activation of hepatocyte Pparg promotes steatosis. In this study, we have assessed the relevance of hepatocyte Pparg, and its TZD-mediated activation in the development and/or reduction of steatosis, with adult-onset hepatocyte-specific Pparg knockout (PpargΔHep) mice. We reported that a single iv injection of AAV8-TBG-Cre in Pparg-floxed mice, knocked out hepatocyte Pparg expression (PpargΔHep mice), and that prevented diet-induced steatosis. In this study, a group of 5 wk-old Pparg-floxed mice were fed a low fat (LF) or a high fat (HF) diet for 7 weeks before generating control and PpargΔHep mice. Then, half of the HF-fed mice in each group were switched to a HF diet supplemented with the TZD Rosiglitazone maleate, for 5 weeks. HF diet induced mild obesity (36.8 +/- 1.4 g of body weight [BW]), while TZD slightly increased BW (41.3 +/- 1.3 g) and insulin sensitivity. Liver weight was not altered in HF-fed mice with or without TZD, and we did not observe any effect induced by PpargΔHep. Due to the mild phenotype observed in this cohort, we generated a 2nd cohort adjusting for age and length of diet. Briefly, 10 wk-old Pparg-floxed mice were fed a LF or HF diet for 16 weeks before generating control and PpargΔHep mice. Then, half of the HF-fed mice in each group were switched to a HF diet supplemented with Rosiglitazone maleate for 7 weeks. In this group of mice, HF diet induced obesity (50.1 +/- 1.05 g BW), and increased liver weight independent of hepatic Pparg expression. TZD treatment exacerbated obesity (62.4 +/- 1.2g BW) and adiposity, but increased insulin sensitivity as compared to mice fed a HF diet without TZD. Interestingly, PpargΔHep mice fed a HF diet with TZD showed enlarged subcutaneous white and brown adipose tissue weight, and a dramatic reduction in liver weight and steatosis as compared to obese control mice treated with TZD. The expression of hepatic Cd36, Cidea, Cidec, and Fabp4 was increased by TZD in a Pparg-dependent manner in HF-fed mice. Altogether, this data suggest that hepatocyte Pparg expression may offset the antisteatogenic actions of TZD in mice with severe obesity. In obese and insulin resistant individuals, TZD-mediated activation of hepatocyte Pparg may exacerbate steatosis.


Sign in / Sign up

Export Citation Format

Share Document