scholarly journals UCN2: a new candidate influencing pancreatic β-cell adaptations in pregnancy

2020 ◽  
Vol 245 (2) ◽  
pp. 247-257
Author(s):  
Sian J S Simpson ◽  
Lorna I F Smith ◽  
Peter M Jones ◽  
James E Bowe

The corticotropin-releasing hormone (CRH) family of peptides, including urocortin (UCN) 1, 2 and 3, are established hypothalamic neuroendocrine peptides, regulating the physiological and behaviour responses to stress indirectly, via the hypothalamic-pituitary-adrenal (HPA) axis. More recently, these peptides have been implicated in diverse roles in peripheral organs through direct signalling, including in placental and pancreatic islet physiology. CRH has been shown to stimulate insulin release through activation of its cognate receptors, CRH receptor 1 (CRHR1) and 2. However, the physiological significance of this is unknown. We have previously reported that during mouse pregnancy, expression of CRH peptides increase in mouse placenta suggesting that these peptides may play a role in various biological functions associated with pregnancy, particularly the pancreatic islet adaptations that occur in the pregnant state to compensate for the physiological increase in maternal insulin resistance. In the current study, we show that mouse pregnancy is associated with increased circulating levels of UCN2 and that when we pharmacologically block endogenous CRHR signalling in pregnant mice, impairment of glucose tolerance is observed. This effect on glucose tolerance was comparable to that displayed with specific CRHR2 blockade and not with specific CRHR1 blockade. No effects on insulin sensitivity or the proliferative capacity of β-cells were detected. Thus, CRHR2 signalling appears to be involved in β-cell adaptive responses to pregnancy in the mouse, with endogenous placental UCN2 being the likely signal mediating this.

2018 ◽  
Vol 45 (3) ◽  
pp. 1165-1171 ◽  
Author(s):  
Robert Drynda ◽  
Shanta J. Persaud ◽  
James E. Bowe ◽  
Peter M Jones

Background/Aims: Insulin-secreting islet β-cells adapt to the insulin resistance associated with pregnancy by increasing functional β-cell mass, but the placental signals involved in this process are not well defined. In the current study, we analysed expression of G-protein coupled receptor (GPCR) mRNAs in mouse islets and islet GPCR ligand mRNAs in placenta during pregnancy to generate an atlas of potential interactions between the placenta and β-cells to inform future functional studies of islet adaptive responses to pregnancy. Methods: Quantative RT-PCR arrays were used to measure mRNA expression levels of: (i) 342 GPCRs in islets from non-pregnant mice, and in islets isolated from mice on gestational days 12 and 18; (ii) 126 islet GPCR ligands in mouse placenta at gestational days 12 and 18. Results: At gestational day 12, a time of rapid expansion of the β-cell mass, 189 islet GPCR mRNAs were quantifiable, while 79 of the 126 known islet GPCR ligand mRNAs were detectable in placental extracts. Approximately half of the quantifiable placental GPCR ligand genes were of unknown function in β-cells. The expression of some islet GPCR and placental ligand mRNAs varied during pregnancy, with altered expression of both GPCR and ligand mRNAs by gestational day 18. Conclusion: The current study has revealed numerous potential routes for interaction between the placenta and islets, and offers an atlas to inform further functional studies of their roles in adaptive responses to pregnancy, and in the regulation of the β-cell mass.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2237
Author(s):  
Yuko Okano ◽  
Atsuro Takeshita ◽  
Taro Yasuma ◽  
Masaaki Toda ◽  
Kota Nishihama ◽  
...  

Diabetes mellitus is a global threat to human health. The ultimate cause of diabetes mellitus is insufficient insulin production and secretion associated with reduced pancreatic β-cell mass. Apoptosis is an important and well-recognized mechanism of the progressive loss of functional β-cells. However, there are currently no available antiapoptotic drugs for diabetes mellitus. This study evaluated whether recombinant human thrombomodulin can inhibit β-cell apoptosis and improve glucose intolerance in a diabetes mouse model. A streptozotocin-induced diabetes mouse model was prepared and treated with thrombomodulin or saline three times per week for eight weeks. The glucose tolerance and apoptosis of β-cells were evaluated. Diabetic mice treated with recombinant human thrombomodulin showed significantly improved glucose tolerance, increased insulin secretion, decreased pancreatic islet areas of apoptotic β-cells, and enhanced proportion of regulatory T cells and tolerogenic dendritic cells in the spleen compared to counterpart diseased mice treated with saline. Non-diabetic mice showed no changes. This study shows that recombinant human thrombomodulin, a drug currently used to treat patients with coagulopathy in Japan, ameliorates glucose intolerance by protecting pancreatic islet β-cells from apoptosis and modulating the immune response in diabetic mice. This observation points to recombinant human thrombomodulin as a promising antiapoptotic drug for diabetes mellitus.


2010 ◽  
Vol 299 (1) ◽  
pp. E23-E32 ◽  
Author(s):  
Arthur T. Suckow ◽  
Branch Craige ◽  
Victor Faundez ◽  
William J. Cain ◽  
Steven D. Chessler

Pancreatic islet β-cells contain synaptic-like microvesicles (SLMVs). The origin, trafficking, and role of these SLMVs are poorly understood. In neurons, synaptic vesicle (SV) biogenesis is mediated by two different cytosolic adaptor protein complexes, a ubiquitous AP-2 complex and the neuron-specific AP-3B complex. Mice lacking AP-3B subunits exhibit impaired GABAergic (inhibitory) neurotransmission and reduced neuronal vesicular GABA transporter (VGAT) content. Since β-cell maturation and exocytotic function seem to parallel that of the inhibitory synapse, we predicted that AP-3B-associated vesicles would be present in β-cells. Here, we test the hypothesis that AP-3B is expressed in islets and mediates β-cell SLMV biogenesis. A secondary aim was to test whether the sedimentation properties of INS-1 β-cell microvesicles are identical to those of bona fide SLMVs isolated from PC12 cells. Our results show that the two neuron-specific AP-3 subunits β3B and μ3B are expressed in β-cells, the first time these proteins have been found to be expressed outside the nervous system. We found that β-cell SLMVs share the same sedimentation properties as PC12 SLMVs and contain SV proteins that sort specifically to AP-3B-associated vesicles in the brain. Brefeldin A, a drug that interferes with AP-3-mediated SV biogenesis, inhibits the delivery of AP-3 cargoes to β-cell SLMVs. Consistent with a role for AP-3 in the biogenesis of GABAergic SLMV in β-cells, INS-1 cell VGAT content decreases upon inhibition of AP-3 δ-subunit expression. Our findings suggest that β-cells and neurons share molecules and mechanisms important for mediating the neuron-specific membrane trafficking pathways that underlie synaptic vesicle formation.


Endocrinology ◽  
2009 ◽  
Vol 150 (9) ◽  
pp. 4074-4083 ◽  
Author(s):  
Ji-Won Kim ◽  
Young-Hye You ◽  
Dong-Sik Ham ◽  
Jae-Hyoung Cho ◽  
Seung-Hyun Ko ◽  
...  

Abstract Peroxisome proliferator-activated receptor γ-coactivator-1α (PGC-1α) is significantly elevated in the islets of animal models of diabetes. However, the molecular mechanism has not been clarified. We investigated whether the suppression of PGC-1α expression protects against β-cell dysfunction in vivo and determined the mechanism of action of PGC-1α in β-cells. The studies were performed in glucolipotixicity-induced primary rat islets and INS-1 cells. In vitro and in vivo approaches using adenoviruses were used to evaluate the role of PGC-1α in glucolipotoxicity-associated β-cell dysfunction. The expression of PGC-1α in cultured β-cells increased gradually with glucolipotoxicity. The overexpression of PGC-1α also suppressed the expression of the insulin and β-cell E-box transcription factor (BETA2/NeuroD) genes, which was reversed by PGC-1α small interfering RNA (siRNA). BETA2/NeuroD, p300-enhanced BETA2/NeuroD, and insulin transcriptional activities were significantly suppressed by Ad-PGC-1α but were rescued by Ad-siPGC-1α. PGC-1α binding at the glucocorticoid receptor site on the BETA2/NeuroD promoter increased in the presence of PGC-1α. Ad-siPGC-1α injection through the celiac arteries of 90% pancreatectomized diabetic rats improved their glucose tolerance and maintained their fasting insulin levels. The suppression of PGC-1α expression protects the glucolipotoxicity-induced β-cell dysfunction in vivo and in vitro. A better understanding of the functions of molecules such as PGC-1α, which play key roles in intracellular fuel regulation, could herald a new era of the treatment of patients with type 2 diabetes mellitus by providing protection from glucolipotoxicity, which is an important cause of the development and progression of the disease.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Frank Chenfei Ning ◽  
Nina Jensen ◽  
Jiarui Mi ◽  
William Lindström ◽  
Mirela Balan ◽  
...  

AbstractType 2 diabetes mellitus (T2DM) affects millions of people and is linked with obesity and lipid accumulation in peripheral tissues. Increased lipid handling and lipotoxicity in insulin producing β-cells may contribute to β-cell dysfunction in T2DM. The vascular endothelial growth factor (VEGF)-B regulates uptake and transcytosis of long-chain fatty acids over the endothelium to tissues such as heart and skeletal muscle. Systemic inhibition of VEGF-B signaling prevents tissue lipid accumulation, improves insulin sensitivity and glucose tolerance, as well as reduces pancreatic islet triglyceride content, under T2DM conditions. To date, the role of local VEGF-B signaling in pancreatic islet physiology and in the regulation of fatty acid trans-endothelial transport in pancreatic islet is unknown. To address these questions, we have generated a mouse strain where VEGF-B is selectively depleted in β-cells, and assessed glucose homeostasis, β-cell function and islet lipid content under both normal and high-fat diet feeding conditions. We found that Vegfb was ubiquitously expressed throughout the pancreas, and that β-cell Vegfb deletion resulted in increased insulin gene expression. However, glucose homeostasis and islet lipid uptake remained unaffected by β-cell VEGF-B deficiency.


Endocrinology ◽  
2013 ◽  
Vol 154 (4) ◽  
pp. 1424-1433 ◽  
Author(s):  
M. Padmasekar ◽  
N. Lingwal ◽  
B. Samikannu ◽  
C. Chen ◽  
H. Sauer ◽  
...  

Abstract Oxidative stress produced during pancreatic islet isolation leads to significant β-cell damage. Homeostatic cytokines secreted subsequently to islet transplantation damage β-cells by generating oxygen free radicals. In this study, exendin-4, a glucagon-like peptide-1 analog improved islet transplantation outcome by increasing the survival of diabetic recipient mice from 58% to 100%. We hypothesized that this beneficial effect was due to the ability of exendin-4 to reduce oxidative stress. Further experiments showed that it significantly reduced the apoptotic rate of cultured β-cells subjected to hypoxia or to IL-1β. Reduction of apoptotic events was confirmed in pancreatic islet grafts of exendin-4–treated mice. Exendin-4 enhanced Akt phosphorylation of β-cells and insulin released from them. It even augmented insulin secretion from islets cultivated at hypoxic conditions. Exposure to hypoxia led to a decrease in the activation of Akt, which was reversed when β-cells were pretreated with exendin-4. Moreover, exendin-4 increased the activity of redox enzymes in a hypoxia-treated β-cell line and reduced reactive oxygen species production in isolated pancreatic islets. Recovery from diabetes in mice transplanted with hypoxic islets was more efficient when they received exendin-4. In conclusion, exendin-4 rescued islets from oxidative stress caused by hypoxia or due to cytokine exposure. It improved the outcome of syngenic and xenogenic islet transplantation.


2020 ◽  
Author(s):  
Ruiying Hu ◽  
Xiaodong Zhu ◽  
Mingyang Yuan ◽  
Kung-Hsien Ho ◽  
Irina Kaverina ◽  
...  

AbstractFor sustainable function, each pancreatic islet β cell maintains thousands of insulin granules (IGs) at all times. Glucose stimulation induces the secretion of a small portion of these IGs and simultaneously triggers IG biosynthesis to sustain this stock. The failure of these processes, often induced by sustained high-insulin output, results in type 2 diabetes. Intriguingly, newly synthesized IGs are more likely secreted during glucose-stimulated insulin secretion. The older IGs tend to lose releasability and be degraded, which represents a futile metabolic load that can sensitize β cells to workload-induced dysfunction and even death. Here, we examine the factor(s) that allows the preferential secretion of younger IGs. We show that β cells without either microtubules (MTs) or Gαo signaling secrete a bigger portion of older IGs, which is associated with increased IG docking on plasma membrane. Yet Gαo inactivation does not alter the β-cell MT network. These findings suggest that Gαo and MT regulate the preferential release of newer IGs via parallel pathways and provide two potential models to further explore the underlying mechanisms and physiological significance of this regulation in functional β cells.


2020 ◽  
Author(s):  
Gabriel Cao ◽  
Julián González ◽  
Juan P. Ortiz Fragola ◽  
Angélica Muller ◽  
Mariano Tumarkin ◽  
...  

AbstractIn previous studies, we reported evidence showing that chronic cola consumption in rats impairs pancreatic metabolism of insulin and glucagon and produces some alterations typically observed in the metabolic syndrome (i.e, hyperglycemia, and hypertriglyceridemia) with an increase in oxidative stress. Of note, no apoptosis nor proliferation of islet cells could be demonstrated. In the present study, 36 male Wistar rats were divided in three groups to freely drink regular cola, light cola, or water (controls). We assessed the impact of the three different beverages in glucose tolerance, lipid levels, creatinine levels and immunohistochemical changes addressed for the expression of insulin, glucagon, PDX-1 and NGN3 in islet cells, to evaluate the possible participation of PDX-1 in the changes observed in α and β cells after 6 months of treatment. On the other hand, we assessed by stereological methods, the mean volume of islets (Vi) and three important variables, the fractional β-cell area, the cross-sectional area of alpha (A α-cell) and beta cells (A β-cell), and the number of β and α cell per body weight.Cola drinking caused impaired glucose tolerance as well as fasting hyperglycemia and increase of insulin immunolabeling. Immunohistochemical expression for PDX-1 was significantly high in regular cola consumption group compared to control. In this case, we observed cytoplasmatic and nuclear localization. Likewise, a mild but significant decrease of Vi was detected after 6 months of cola drink consumption compared with control group. Also, we observed a significant decrease of fractional β cell area compared with control rats. Accordingly, a reduced mean value of islet α and β cell number per body weight compared to control was detected. Interestingly, consumption of light cola increased the Vi compared to control. In line with this, a decreased cross-sectional area of β-cells was observed after chronic consumption of both, regular and light cola, compared to controls. On the other hand, NGN3 was negative in all three groups. Our results support for the first time, the idea that TDX-1 plays a key role in the dynamics of the pancreatic islets after chronic consumption of sweetened beverages. The loss of islets cells might be attributed to autophagy, favored by the local metabolic conditions.


2014 ◽  
Vol 26 (1) ◽  
pp. 167
Author(s):  
S. Zhang ◽  
X. M. Zhang ◽  
Z. Y. Li

Diabetes, an increasingly prevalent metabolic disorder, which is estimated to affect over 300 million people by 2025 (Zimmet et al. 2001 Nature), commonly results from β-cell function failure. In normal physiological conditions, β-cell turnover occurs slowly throughout the lifetime of the adult mammal. During pregnancy, β cells could increase their replication rate through reducing menin expression and then cause islets hyperplasia to match the physiological demands (Karnik et al. 2007 Science). However, whether the fetuses have an influence on the β-cell replication and islets hyperplasia during pregnancy is still unknown. The objective of the present study was to test whether pregnancy without fetuses could also decrease the expression of menin, and then cause an increase in the β-cell replication rate and islets hyperplasia. First, we generated pregnant mice with tetraploid blastocysts (PT mice), which can implant and generate placentas similar to the normal diploid blastocysts, but cannot develop into fetuses. Pancreases from at least 3 mice per group were embedded in optimum cutting temperature compound (OCT) and sectioned at 8-μm intervals. The sections were stained with hematoxylin and eosin (HE), and then the morphological structures of islets were observed under a microscope. The results showed that the islets mass of PT mice had obvious hyperplasia compared with wild-type controls (WT). Second, we isolated the islets of PT mice, and analysed the Men1, p18, and p27 gene expression in PT mice islets using RT-PCR. We found that the expression of Men1, p27, and p18 in PT mice islets was significantly lower compared with WT controls (P < 0.05). Finally, insulin immunofluorescence was performed to evaluate the insulin expression level of β cells in the islets both from PT mice and the WT group. The evaluation of total fluorescence intensity in islets was performed. The average value from the control group islets was set to 1 and used for comparison to the fluorescence intensity of PT mice islets. The results showed that there was no significant difference between PT mice and WT groups at the insulin level of β cells. Taken together, these results demonstrate that under the conditions of pregnancy without fetuses, maternal pancreatic islets can also cause islets mass hyperplasia through reducing menin expression, but not increase the insulin level per β cell to match the dynamic physiological demands. Therefore, it's possible to treat type-2 diabetes by imitating the pregnant physiological condition without fetuses. This work was supported by grants from the National Natural Science Foundation (No. 31271591) and the National Basic Research Program (No. 2009CB941001 and No. 2011CBA01003) in China.


2020 ◽  
Vol 12 (541) ◽  
pp. eaay0455
Author(s):  
Joon Ho Moon ◽  
Hyeongseok Kim ◽  
Hyunki Kim ◽  
Jungsun Park ◽  
Wonsuk Choi ◽  
...  

Pregnancy imposes a substantial metabolic burden on women through weight gain and insulin resistance. Lactation reduces the risk of maternal postpartum diabetes, but the mechanisms underlying this benefit are unknown. Here, we identified long-term beneficial effects of lactation on β cell function, which last for years after the cessation of lactation. We analyzed metabolic phenotypes including β cell characteristics in lactating and non-lactating humans and mice. Lactating and non-lactating women showed comparable glucose tolerance at 2 months after delivery, but after a mean of 3.6 years, glucose tolerance in lactated women had improved compared to non-lactated women. In humans, the disposition index, a measure of insulin secretory function of β cells considering the degree of insulin sensitivity, was higher in lactated women at 3.6 years after delivery. In mice, lactation improved glucose tolerance and increased β cell mass at 3 weeks after delivery. Amelioration of glucose tolerance and insulin secretion were maintained up to 4 months after delivery in lactated mice. During lactation, prolactin induced serotonin production in β cells. Secreted serotonin stimulated β cell proliferation through serotonin receptor 2B in an autocrine and paracrine manner. In addition, intracellular serotonin acted as an antioxidant to mitigate oxidative stress and improved β cell survival. Together, our results suggest that serotonin mediates the long-term beneficial effects of lactation on female metabolic health by increasing β cell proliferation and reducing oxidative stress in β cells.


Sign in / Sign up

Export Citation Format

Share Document