scholarly journals Protective Role of Recombinant Human Thrombomodulin in Diabetes Mellitus

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2237
Author(s):  
Yuko Okano ◽  
Atsuro Takeshita ◽  
Taro Yasuma ◽  
Masaaki Toda ◽  
Kota Nishihama ◽  
...  

Diabetes mellitus is a global threat to human health. The ultimate cause of diabetes mellitus is insufficient insulin production and secretion associated with reduced pancreatic β-cell mass. Apoptosis is an important and well-recognized mechanism of the progressive loss of functional β-cells. However, there are currently no available antiapoptotic drugs for diabetes mellitus. This study evaluated whether recombinant human thrombomodulin can inhibit β-cell apoptosis and improve glucose intolerance in a diabetes mouse model. A streptozotocin-induced diabetes mouse model was prepared and treated with thrombomodulin or saline three times per week for eight weeks. The glucose tolerance and apoptosis of β-cells were evaluated. Diabetic mice treated with recombinant human thrombomodulin showed significantly improved glucose tolerance, increased insulin secretion, decreased pancreatic islet areas of apoptotic β-cells, and enhanced proportion of regulatory T cells and tolerogenic dendritic cells in the spleen compared to counterpart diseased mice treated with saline. Non-diabetic mice showed no changes. This study shows that recombinant human thrombomodulin, a drug currently used to treat patients with coagulopathy in Japan, ameliorates glucose intolerance by protecting pancreatic islet β-cells from apoptosis and modulating the immune response in diabetic mice. This observation points to recombinant human thrombomodulin as a promising antiapoptotic drug for diabetes mellitus.

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4381
Author(s):  
Zakiyatul Faizah ◽  
Bella Amanda ◽  
Faisal Yusuf Ashari ◽  
Efta Triastuti ◽  
Rebecca Oxtoby ◽  
...  

Diabetes mellitus (DM) is one of the major causes of death in the world. There are two types of DM—type 1 DM and type 2 DM. Type 1 DM can only be treated by insulin injection whereas type 2 DM is commonly treated using anti-hyperglycemic agents. Despite its effectiveness in controlling blood glucose level, this therapeutic approach is not able to reduce the decline in the number of functional pancreatic β cells. MST1 is a strong pro-apoptotic kinase that is expressed in pancreatic β cells. It induces β cell death and impairs insulin secretion. Recently, a potent and specific inhibitor for MST1, called XMU-MP-1, was identified and characterized. We hypothesized that treatment with XMU-MP-1 would produce beneficial effects by improving the survival and function of the pancreatic β cells. We used INS-1 cells and STZ-induced diabetic mice as in vitro and in vivo models to test the effect of XMU-MP-1 treatment. We found that XMU-MP-1 inhibited MST1/2 activity in INS-1 cells. Moreover, treatment with XMU-MP-1 produced a beneficial effect in improving glucose tolerance in the STZ-induced diabetic mouse model. Histological analysis indicated that XMU-MP-1 increased the number of pancreatic β cells and enhanced Langerhans islet area in the severe diabetic mice. Overall, this study showed that MST1 could become a promising therapeutic target for diabetes mellitus.


2020 ◽  
Vol 245 (2) ◽  
pp. 247-257
Author(s):  
Sian J S Simpson ◽  
Lorna I F Smith ◽  
Peter M Jones ◽  
James E Bowe

The corticotropin-releasing hormone (CRH) family of peptides, including urocortin (UCN) 1, 2 and 3, are established hypothalamic neuroendocrine peptides, regulating the physiological and behaviour responses to stress indirectly, via the hypothalamic-pituitary-adrenal (HPA) axis. More recently, these peptides have been implicated in diverse roles in peripheral organs through direct signalling, including in placental and pancreatic islet physiology. CRH has been shown to stimulate insulin release through activation of its cognate receptors, CRH receptor 1 (CRHR1) and 2. However, the physiological significance of this is unknown. We have previously reported that during mouse pregnancy, expression of CRH peptides increase in mouse placenta suggesting that these peptides may play a role in various biological functions associated with pregnancy, particularly the pancreatic islet adaptations that occur in the pregnant state to compensate for the physiological increase in maternal insulin resistance. In the current study, we show that mouse pregnancy is associated with increased circulating levels of UCN2 and that when we pharmacologically block endogenous CRHR signalling in pregnant mice, impairment of glucose tolerance is observed. This effect on glucose tolerance was comparable to that displayed with specific CRHR2 blockade and not with specific CRHR1 blockade. No effects on insulin sensitivity or the proliferative capacity of β-cells were detected. Thus, CRHR2 signalling appears to be involved in β-cell adaptive responses to pregnancy in the mouse, with endogenous placental UCN2 being the likely signal mediating this.


2020 ◽  
Vol 21 (5) ◽  
pp. 1770
Author(s):  
Nadia Rachdaoui

Insulin, a hormone produced by pancreatic β-cells, has a primary function of maintaining glucose homeostasis. Deficiencies in β-cell insulin secretion result in the development of type 1 and type 2 diabetes, metabolic disorders characterized by high levels of blood glucose. Type 2 diabetes mellitus (T2DM) is characterized by the presence of peripheral insulin resistance in tissues such as skeletal muscle, adipose tissue and liver and develops when β-cells fail to compensate for the peripheral insulin resistance. Insulin resistance triggers a rise in insulin demand and leads to β-cell compensation by increasing both β-cell mass and insulin secretion and leads to the development of hyperinsulinemia. In a vicious cycle, hyperinsulinemia exacerbates the metabolic dysregulations that lead to β-cell failure and the development of T2DM. Insulin and IGF-1 signaling pathways play critical roles in maintaining the differentiated phenotype of β-cells. The autocrine actions of secreted insulin on β-cells is still controversial; work by us and others has shown positive and negative actions by insulin on β-cells. We discuss findings that support the concept of an autocrine action of secreted insulin on β-cells. The hypothesis of whether, during the development of T2DM, secreted insulin initially acts as a friend and contributes to β-cell compensation and then, at a later stage, becomes a foe and contributes to β-cell decompensation will be discussed.


2020 ◽  
Vol 12 (541) ◽  
pp. eaay0455
Author(s):  
Joon Ho Moon ◽  
Hyeongseok Kim ◽  
Hyunki Kim ◽  
Jungsun Park ◽  
Wonsuk Choi ◽  
...  

Pregnancy imposes a substantial metabolic burden on women through weight gain and insulin resistance. Lactation reduces the risk of maternal postpartum diabetes, but the mechanisms underlying this benefit are unknown. Here, we identified long-term beneficial effects of lactation on β cell function, which last for years after the cessation of lactation. We analyzed metabolic phenotypes including β cell characteristics in lactating and non-lactating humans and mice. Lactating and non-lactating women showed comparable glucose tolerance at 2 months after delivery, but after a mean of 3.6 years, glucose tolerance in lactated women had improved compared to non-lactated women. In humans, the disposition index, a measure of insulin secretory function of β cells considering the degree of insulin sensitivity, was higher in lactated women at 3.6 years after delivery. In mice, lactation improved glucose tolerance and increased β cell mass at 3 weeks after delivery. Amelioration of glucose tolerance and insulin secretion were maintained up to 4 months after delivery in lactated mice. During lactation, prolactin induced serotonin production in β cells. Secreted serotonin stimulated β cell proliferation through serotonin receptor 2B in an autocrine and paracrine manner. In addition, intracellular serotonin acted as an antioxidant to mitigate oxidative stress and improved β cell survival. Together, our results suggest that serotonin mediates the long-term beneficial effects of lactation on female metabolic health by increasing β cell proliferation and reducing oxidative stress in β cells.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Patlada Suthamwong ◽  
Manabu Minami ◽  
Toshiaki Okada ◽  
Nonomi Shiwaku ◽  
Mai Uesugi ◽  
...  

2020 ◽  
Author(s):  
Søs Skovsø ◽  
Evgeniy Panzhinskiy ◽  
Jelena Kolic ◽  
Derek A. Dionne ◽  
Xiao-Qing Dai ◽  
...  

AbstractInsulin receptor (Insr) protein can be found at higher levels in pancreatic β-cells than in most other cell types, but the consequences of β-cell insulin resistance remain enigmatic. Ins1cre allele was used to delete Insr specifically in β-cells of both female and male mice which were compared to Ins1cre-containing littermate controls at multiple ages and on multiple diets. RNA-seq of recombined β-cells revealed significant differences in multiple pathways previously implicated in insulin secretion and cellular fate, including rewired Ras and NFκB signaling. Male, but not female, βInsrKO mice had reduced oxygen consumption rate, while action potential and calcium oscillation frequencies were increased in Insr knockout β-cells from female, but not male mice. Female βInsrKO and βInsrHET mice exhibited elevated insulin release in perifusion experiments, during hyperglycemic clamps, and following i.p. glucose challenge. Deletion of Insr did not reduce β-cell mass up to 9 months of age, nor did it impair hyperglycemia-induced proliferation. Based on our data, we adapted a mathematical model to include β-cell insulin resistance, which predicted that β-cell Insr knockout would improve glucose tolerance depending on the degree of whole-body insulin resistance. Indeed, glucose tolerance was significantly improved in female βInsrKO and βInsrHET mice when compared to controls at 9, 21 and 39 weeks. We did not observe improved glucose tolerance in adult male mice or in high fat diet-fed mice, corroborating the prediction that global insulin resistance obscures the effects of β-cell specific insulin resistance. We further validated our in vivo findings using the Ins1-CreERT transgenic line and found improved glucose tolerance 4 weeks after tamoxifen-mediated Insr deletion. Collectively, our data show that loss of β-cell Insr alone is sufficient to drive glucose-induced hyperinsulinemia, thereby improving glucose homeostasis in otherwise insulin sensitive dietary and age contexts.


2014 ◽  
Vol 53 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Zhipeng Li ◽  
Zhaoshui Shangguan ◽  
Yijie Liu ◽  
Jihua Wang ◽  
Xuejun Li ◽  
...  

Pancreatic β-cell loss because of apoptosis is the major cause of type 1 diabetes (T1D) and late stage T2D. Puerarin possesses anti-diabetic properties; whether it acts directly on pancreatic β-cell is not clear. This study was designed to investigate the effects of puerarin on pancreatic β-cell survival and function. Diabetes was induced in male C57BL/6 mice by a single peritoneal injection of streptozotocin (STZ). Pancreatic β-cell survival and function were assessed in diabetic mice by measuring β-cell apoptosis, β-cell mass, pancreatic insulin content, and glucose tolerance, and in cultured islets and clonial MIN6 β-cells by measuring β-cell viability and apoptosis and glucose-stimulated insulin secretion. We found that pre-treatment with puerarin decreased the incidence of STZ-induced diabetes. Puerarin increased pancreatic β-cell mass via β-cell apoptosis inhibition in diabetic mice, and increased serum insulin, whereas it decreased blood glucose levels and improved glucose tolerance. In cultured islets and MIN6 cells, puerarin protected β-cell from cobalt chloride (CoCl2)-induced apoptosis and restored the impaired capacity of glucose-stimulated insulin secretion. Puerarin protection of β-cell survival involved the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. In conclusion, puerarin protects pancreatic β-cell function and survival via direct effects on β-cells, and its protection of β-cell survival is mediated by the PI3K/Akt pathway. As a safe natural plant extraction, puerarin might serve as a preventive and/or therapeutic approach for diabetes.


2010 ◽  
Vol 298 (2) ◽  
pp. E278-E286 ◽  
Author(s):  
Yukiko Kanda ◽  
Masashi Shimoda ◽  
Sumiko Hamamoto ◽  
Kazuhito Tawaramoto ◽  
Fumiko Kawasaki ◽  
...  

Pioglitazone preserves pancreatic β-cell morphology and function in diabetic animal models. In this study, we investigated the molecular mechanisms by which pioglitazone protects β-cells in diabetic db/db mice. In addition to the morphological analysis of the islets, gene expression profiles of the pancreatic islet were analyzed using laser capture microdissection and were compared with real-time RT-PCR of db/db and nondiabetic m/m mice treated with or without pioglitazone for 2 wk or 2 days. Pioglitazone treatment (2 wk) ameliorated dysmetabolism, increased islet insulin content, restored glucose-stimulated insulin secretion, and preserved β-cell mass in db/db mice but had no significant effects in m/m mice. Pioglitazone upregulated genes that promote cell differentiation/proliferation in diabetic and nondiabetic mice. In db/db mice, pioglitazone downregulated the apoptosis-promoting caspase-activated DNase gene and upregulated anti-apoptosis-related genes. The above-mentioned effects of pioglitazone treatment were also observed after 2 days of treatment. By contrast, the oxidative stress-promoting NADPH oxidase gene was downregulated, and antioxidative stress-related genes were upregulated, in db/db mice treated with pioglitazone for 2 wk, rather than 2 days. Morphometric results for proliferative cell number antigen and 4-hydroxy-2-noneal modified protein were consistent with the results of gene expression analysis. The present results strongly suggest that pioglitazone preserves β-cell mass in diabetic mice mostly by two ways; directly, by acceleration of cell differentiation/proliferation and suppression of apoptosis (acute effect); and indirectly, by deceleration of oxidative stress because of amelioration of the underlying metabolic disorder (chronic effect).


Endocrinology ◽  
2014 ◽  
Vol 155 (10) ◽  
pp. 3843-3852 ◽  
Author(s):  
K-Lynn N. Hogh ◽  
Michael N. Craig ◽  
Christopher E. Uy ◽  
Heli Nygren ◽  
Ali Asadi ◽  
...  

Abstract The contribution of peroxisomal proliferator-activated receptor (PPAR)-γ agonism in pancreatic β-cells to the antidiabetic actions of thiazolidinediones has not been clearly elucidated. Genetic models of pancreatic β-cell PPARγ ablation have revealed a potential role for PPARγ in β-cell expansion in obesity but a limited role in normal β-cell physiology. Here we overexpressed PPARγ1 or PPARγ2 specifically in pancreatic β-cells of mice subjected to high-fat feeding using an associated adenovirus (β-PPARγ1-HFD and β-PPARγ2-HFD mice). We show β-cell-specific PPARγ1 or PPARγ2 overexpression in diet-induced obese mice exacerbated obesity-induced glucose intolerance with decreased β-cell mass, increased islet cell apoptosis, and decreased plasma insulin compared with obese control mice (β-eGFP-HFD mice). Analysis of islet lipid composition in β-PPARγ2-HFD mice revealed no significant changes in islet triglyceride content and an increase in only one of eight ceramide species measured. Interestingly β-PPARγ2-HFD islets had significantly lower levels of lysophosphatidylcholines, lipid species shown to enhance insulin secretion in β-cells. Gene expression profiling revealed increased expression of uncoupling protein 2 and genes involved in fatty acid transport and β-oxidation. In summary, transgenic overexpression of PPARγ in β-cells in diet-induced obesity negatively impacts whole-animal carbohydrate metabolism associated with altered islet lipid content, increased expression of β-oxidative genes, and reduced β-cell mass.


Sign in / Sign up

Export Citation Format

Share Document