scholarly journals Progesterone supplementation extends uterine receptivity for blastocyst implantation in mice

Reproduction ◽  
2007 ◽  
Vol 133 (2) ◽  
pp. 487-493 ◽  
Author(s):  
Haengseok Song ◽  
Kyuyong Han ◽  
Hyunjung Lim

We previously showed that blastocyst can initiate implantation beyond the normal ‘window’ of uterine receptivity on day 5 of pregnancy and pseudopregnancy (PSP) in mice. In this study, we investigated whether uterine receptivity for blastocyst implantation can be further extended on day 6 of PSP and the role of progesterone (P4) on this event. Embryo transfers, experimentally induced decidualization,in situhybridization and [3H]thymidine incorporation were performed. Blastocysts initiate attachment reaction within 48 h when transferred on day 5, but not on day 6 of PSP. Likewise, decidualization reaction occurred on days 4 and 5 of PSP, but completely failed on day 6. However, P4supplementation partially retains uterine receptivity for blastocyst implantation and decidualization on day 6 of PSP. In addition, certain indicators of uterine receptivity, such as cell proliferation profile and expression patterns of implantation-related genes were similarly observed on days 4 and 5 of PSP, but not on day 6. Consistent with embryo transfer and decidualization, exogenous administration of P4partially restores these indicators on day 6 of PSP. We concluded that critical physiological changes occur between days 4 and 5 of PSP, leading to uterine non-receptivity on day 6, but P4is able to extend the uterine receptivity through day 6.

2020 ◽  
Author(s):  
Tong Zhao ◽  
Alma Piñeyro-Nelson ◽  
Qianxia Yu ◽  
Xiaoying Hu ◽  
Huanfang Liu ◽  
...  

Abstract Background:The flower of Hedychium coronarium possesses highly specialized floral organs: a synsepalous calyx, petaloid staminodes and a labellum. The formation of these organs is controlled by two gene categories: floral organ identity genes and organ boundary genes, which may function individually or jointly during flower development. Although the floral organogenesis of H. coronarium has been studied at the morphological level, the underlying molecular mechanisms involved in its floral development still remain poorly understood. In addition, previous works analyzing the role of MADS-box genes in controlling floral organ specification in some Zingiberaceae did not address the molecular mechanisms involved in the formation of particular organ morphologies that emerge later in flower development, such as the synsepalous calyx formed through intercalary growth of adjacent sepals. Results:Here, we used comparative transcriptomics combined with Real-time quantitative PCR and mRNA in situ hybridization to investigate gene expression patterns of ABC-class genes in H. coronarium flowers, as well as the homolog of the organ boundary gene PETAL LOSS (HcPTL). qRT-PCR detection showed that HcAP3 and HcAG were expressed in both the petaloid staminode and the fertile stamen. mRNA in situ hybridization showed that HcPTL was expressed in developing meristems, including cincinnus primordia, floral primordia, common primordia and almost all new initiating floral organ primordia.Conclusions:Our studies found that stamen/petal identity or stamen fertility in H. coronarium was not necessarily correlated with the differential expression of HcAP3 and HcAG. We also found a novel spatio-temporal expression pattern for HcPTL mRNA, suggesting it may have evolved a lineage-specific role in the morphogenesis of the Hedychium flower. Our study provides a new transcriptome reference and a functional hypothesis regarding the role of a boundary gene in organ fusion that should be further addressed through phylogenetic analyzes of this gene, as well as functional studies.


Development ◽  
1991 ◽  
Vol 111 (3) ◽  
pp. 699-713 ◽  
Author(s):  
X. Desbiens ◽  
C. Queva ◽  
T. Jaffredo ◽  
D. Stehelin ◽  
B. Vandenbunder

We have described the expression of three nuclear protooncogenes, c-myc, c-myb and c-ets-1 during feather morphogenesis in the chick embryo. In parallel with the expression patterns obtained by in situ hybridization, we have mapped the spatial distribution of S-phase cells by monitoring the incorporation of 5-bromodeoxyuridine. We do not detect c-myc or c-myb transcripts during the early stages when S-phase cells are scattered in the dermis and in the epidermis. Rather c-ets-1 transcripts are abundant in the dermal cells which divide and accumulate under the uniform epidermis. At the onset of the formation of the feather bud, cells within each rudiment cease DNA replicative activities and c-myc transcripts are detected both in the epidermis and in the underlying dermis. This expression precedes the reentry into the S phase. The transcription of c-myb, which has been previously tightly linked to hemopoietic cells is also detected in the developing skin. This expression is essentially located in proliferating epidermal cells on and after the beginning of feather outgrowth. As feather outgrowth proceeds, the distribution of c-myc and c-myb transcripts is restricted to the highly proliferating epidermis. In contrast c-ets-1 transcripts are never detected in the epidermis. During the later stages of skin morphogenesis, the transcription of c-ets-1 is restricted to the endothelial cells of blood vessels, as previously described. We suggest that the differential expression of these nuclear oncogenes reflects the activation of different mitotic controlling pathways during the development of the skin.


1983 ◽  
Vol 244 (5) ◽  
pp. G469-G474 ◽  
Author(s):  
J. P. Buts ◽  
R. De Meyer ◽  
J. Kolanowski

This study was undertaken to determine whether the rat colon exhibits ontogenic changes in epithelial cell proliferation and DNA synthesis during growth. DNA synthesis was measured at intervals after birth in four colonic segments by the incorporation rates of [3H]thymidine. The labeled crypt cell index was determined by radioautography. New findings from our study are that 1) in each colonic segment of suckling rats, [3H]thymidine incorporation rate overshot the adult levels (49-119%) with a peak occurring at day 14 postpartum, 2) between days 14 and 20, the incorporation rates declined sharply to adult values and remained thereafter unchanged until adulthood; during the same period, the labeled and mitotic index decreased, respectively, from 52 to 19% and from 3.58 to 1.43%, 3) the decrease in DNA synthesis and in cell proliferation rates was concomitant with an upsurge in plasma total corticosterone initiated on day 14, and 4) treatment of 10-day-old sucklings with physiological doses of hydrocortisone for 4 consecutive days significantly depressed (P less than 0.01) colonic DNA content and DNA synthesis rates to levels about 45-67% of the control values. These data indicate that growth of the colon may be under the control of glucocorticoid secretion at the weaning period.


2020 ◽  
Vol 11 ◽  
Author(s):  
Qianxia Yu ◽  
Xueyi Tian ◽  
Canjia Lin ◽  
Chelsea D. Specht ◽  
Jingping Liao

The asymmetric flower, lacking any plane of symmetry, is rare among angiosperms. Canna indica L. has conspicuously asymmetric flowers resulting from the presence of a half-fertile stamen, while the other androecial members develop as petaloid staminodes or abort early during development. The molecular basis of the asymmetric distribution of fertility and petaloidy in the androecial whorls remains unknown. Ontogenetic studies have shown that Canna flowers are borne on monochasial (cincinnus) partial florescences within a racemose inflorescence, with floral asymmetry likely corresponding to the inflorescence architecture. Given the hypothesized role of CYC/TB1 genes in establishing floral symmetry in response to the influence of the underlying inflorescence architecture, the spatiotemporal expression patterns of three Canna CYC/TB1 homologs (CiTBL1a, CiTBL1b-1, and CiTBL1b-2) were analyzed during inflorescence and floral development using RNA in situ hybridization and qRT-PCR. In the young inflorescence, both CiTBL1a and CiTBL1b-1 were found to be expressed in the bracts and at the base of the lateral florescence branches, whereas transcripts of CiTBL1b-2 were mainly detected in flower primordia and inflorescence primordia. During early flower development, expression of CiTBL1a and CiTBL1b-1 were both restricted to the developing sepals and petals. In later flower development, expression of CiTBL1a was reduced to a very low level while CiTBL1b-1 was detected with extremely high expression levels in the petaloid androecial structures including the petaloid staminodes, the labellum, and the petaloid appendage of the fertile stamen. In contrast, expression of CiTBL1b-2 was strongest in the fertile stamen throughout flower development, from early initiation of the stamen primordium to maturity of the ½ anther. Heterologous overexpression of CiTBL genes in Arabidopsis led to dwarf plants with smaller petals and fewer stamens, and altered the symmetry of mature flowers. These data provide evidence for the involvement of CYC/TB1 homologs in the development of the asymmetric Cannaceae flower.


Development ◽  
1992 ◽  
Vol 115 (4) ◽  
pp. 999-1009 ◽  
Author(s):  
L. Bally-Cuif ◽  
R.M. Alvarado-Mallart ◽  
D.K. Darnell ◽  
M. Wassef

Grafting a met-mesencephalic portion of neural tube from a 9.5-day mouse embryo into the prosencephalon of a 2-day chick embryo results in the induction of chick En-2 (ChickEn) expression in cells in contact with the graft (Martinez et al., 1991). In this paper we investigate the possibility of Wnt-1 being one of the factors involved in En-2 induction. Since Wnt-1 and En-2 expression patterns have been described as diverging during development of the met-mesencephalic region, we first compared Wnt-1 and En-2 expression in this domain by in situ hybridization in mouse embryos after embryonic day 8.5. A ring of Wnt-1-expressing cells is detected encircling the neural tube in the met-mesencephalic region at least until day 12.5. This ring consistently overlapped with the En-2 expression domain, and corresponds to the position of this latter gene's maximal expression. We subsequently studied ChickEn ectopic induction in chick embryos grafted with various portions of met-mesencephalon. When the graft originated from the level of the Wnt-1-positive ring, ChickEn induction was observed in 71% of embryos, and in these cases correlated with Wnt-1 expression in the grafted tissue. In contrast, this percentage dropped significantly when the graft was taken from more rostral or caudal parts of the mesencephalic vesicle. Taken together, these results are compatible with a prolonged role of Wnt-1 in the specification and/or development of the met-mesencephalic region, and show that Wnt-1 could be directly or indirectly involved in the regulation of En-2 expression around the Wnt-1-positive ring during this time. We also provide data on the position of the Wnt-1-positive ring relative to anatomical boundaries in the neural tube, which suggest a more general role for the Wnt-1 protein as a positional signal involved in organizing the met-mesencephalic domain.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi207-vi208
Author(s):  
Rebeca Nunez ◽  
Miguel Mayol-Del Valle ◽  
Luis Almodovar ◽  
Lilia Kucheryavykh

Abstract Glioblastoma (GBM) is the most aggressive and highly invasive primary brain tumor in adults. Evidence suggests that microglia create a microenvironment favoring glioma invasion and proliferation. Indeed, previous reports indicate the involvement of focal adhesion kinase (FAK) signaling cascades in glioma cell proliferation. Besides, studies from our laboratory support a critical role of Pyk2, a relative of FAK, in glioma invasion by tumor-infiltrating microglia. However, the microglial-released factors modulating Pyk2 and FAK signaling pathways are unknown. In this study, 20 human GBM specimens were evaluated to identify the cytokine expression patterns in purified microglia and FAK and Pyk2 phosphorylation in glioma cell fraction by RT-PCR and western blot. A Pierson correlation test demonstrated a high correlation (0.8-1.0) of gene expression for PDGFα, PDGFβ, SDF-1α, IL-6, IL-8, and EGF in percoll-purified microglia, and pPyk2(Y579/580) and pFAK(Y925) levels in glioma cell fraction. The role of cytokines in cell invasion and proliferation by Pyk2/FAK activation was further investigated in primary cell lines from three patients. Thirty percent up-regulation of pPyk2 and pFAK was detected in glioma cells treated (2 hrs.) with microglia conditioned media (MCM) compared to control cells. siPyk2 or siFAK knockdown identified IL-6 (100 μM) and EGF (1 μM) as key factors of Pyk2- and FAK-dependent activation in all glioma cell lines. Similar results with siPyk2 or siFAK were observed for matrix degradation, invadopodia formation, cell viability, and mitosis. Indeed, Tocilizumab (IL-6R blocker, 100 ng/mL) and Gefitinib (EGFR blocker, 1 μM) reversed the effect of MCM on glioma cell proliferation and invasion in all cell lines evaluated. These findings support a pivotal role of Pyk2 and FAK in enhancing proliferation and invasion of glioma tumors through IL-6 and EGF-dependent pathways. The latter could be of clinical relevance for new therapeutic developments in GBM patients.


2006 ◽  
Vol 18 (3) ◽  
pp. 339 ◽  
Author(s):  
Ralph Rühl ◽  
Britta Fritzsche ◽  
Julien Vermot ◽  
Karen Niederreither ◽  
Ulrike Neumann ◽  
...  

The active metabolite of vitamin A, retinoic acid (RA), plays an important role in the female reproductive system. The synthesis of RA is tightly regulated by the activity of retinaldehyde dehydrogenases (Raldh). Among these, Raldh1 and Raldh2 exhibit specific temporal and spatial expression patterns in the mouse uterus, both during the oestrous cycle and early pregnancy. In the present study, we have assessed whether oestradiol and progesterone directly influence the uterine expression of Raldh1 and Raldh2 in ovariectomised mice. We investigated the effect of gestagen (promegestone 0.3 mg kg−1 bodyweight), oestrogen (oestradiol 3 µg kg−1 bodyweight) and their combination on the uterine expression of Raldh2. Expression was analysed using in situ hybridisation and quantified using real-time detection reverse transcription–polymerase chain reaction. The results show that the expression of Raldh2 is rapidly (within 1–4 h) induced in stromal cells by oestrogen, but not by gestagen, treatment, whereas combined oestrogen + gestagen treatment leads to a more prolonged (48 h) response. In contrast, oestrogen, but not progesterone, treatment downregulates (within 4–24 h) Raldh1 expression in the uterine glandular epithelium. We conclude that the uterine RA concentrations are regulated by oestrogens via an effect on the expression of the Raldh synthesising enzymes. Such a regulation is consistent with the natural fluctuations of Raldh expression during the oestrous cycle, early pregnancy and blastocyst implantation.


2015 ◽  
Vol 93 (4) ◽  
pp. 396-404 ◽  
Author(s):  
Candace Elaine Rapchak ◽  
Neeraj Patel ◽  
John Hudson ◽  
Michael Crawford

The polo-like kinases are a family of conserved serine/threonine kinases that play multiple roles in regulation of the cell cycle. Unlike its four other family members, the role of Plk4 in embryonic development has not been well characterized. In mice, Plk4−/− embryos arrest at E7.5, just prior to the initiation of somitogenesis. This has led to the hypothesis that Plk4 expression may be essential to somitogenesis. Recently characterized human mutations lead to Seckel Syndrome. Riboprobe in situ hybridization revealed that plk4 is ubiquitously expressed during early stages of development of Xenopus and Danio; in later stages, expression in frogs restricts to somites as well as eye, otic vesicle, and branchial arch, and brain. Expression patterns in fish remain ubiquitous. Both somite and eye development require planar cell polarity, and disruption of plk4 function in frog by means of morpholino-mediated translational knockdown yields orientational disorganization of both these structures. These results provide the first steps in defining a new role for plk4 in organogenesis and implies a role in planar cell polarity, segmentation, and in recently described PLK4 mutations in human.


2003 ◽  
Vol 14 (5) ◽  
pp. 197-199 ◽  
Author(s):  
Carlos Simon ◽  
Francisco Domínguez ◽  
Diana Valbuena ◽  
Antonio Pellicer

2017 ◽  
Vol 95 (3) ◽  
pp. 421-427 ◽  
Author(s):  
Peter K. Eck ◽  
Christopher Corpe ◽  
Mark A. Levine

The two membrane transporters Slc23a1 and Slc23a2 mediate ascorbic acid uptake into cells. We recently determined the key role of Slc23a1 in renal re-absorption of ascorbic acid in a knockout mouse model. However, the renal spatial and temporal expression patterns of murine Slc23a1 and Slc23a2 are not defined. This study utilizes database evidence combined with experimental confirmation via in-situ hybridization to define the spatial and temporal expression of Slc23a1 in the murine kidney. Slc23a1 is expressed in the early proximal tubule, but not in its precursors during embryonic development, and exclusive proximal tubular expression persists throughout the animal’s lifetime. In contrast, Slc23a2 is uniformly expressed in metabolic cell types such as stromal cells. The expression patterns appear to be conserved from rodent lineages to humans.


Sign in / Sign up

Export Citation Format

Share Document