scholarly journals Dickkopf-1 secreted by decidual cells promotes trophoblast cell invasion during murine placentation

Reproduction ◽  
2008 ◽  
Vol 135 (3) ◽  
pp. 367-375 ◽  
Author(s):  
Sha Peng ◽  
Jing Li ◽  
Chenglin Miao ◽  
Liwei Jia ◽  
Zeng Hu ◽  
...  

Dickkopf-1 (Dkk1) is one of the secreted antagonists in the canonical Wnt signaling pathway. It plays important roles in diverse developmental processes. However, the role of Dkk1 in trophoblast cell invasion during placentation remains unclear. In this study, we found that Dkk1 was mainly expressed in maternal decidual tissue but trivially in ectoplacental cones (EPCs) in day 8 post coitum (p.c.) pregnant mouse uterus and that the efficiency of EPC attachment and outgrowth was increased when co-cultured with decidual cells, which secreted Dkk1, and this enhancement was abolished by pretreating decidual cells with Dkk1 blocking antibody before co-culture experiment. This indicates that Dkk1 secreted by decidual cells plays an important role in trophoblast cell invasion. Indeed, when recombinant mouse Dkk1 was added to EPCs in vitro, the efficiency of attachment and outgrowth was increased. Migration of EPCs toward the decidua was retarded when antisense Dkk1 oligonucleotide (ODN) was administered via intrauterine injection in vivo. Furthermore, the active β-catenin nuclear location was lost when we treated cultured EPCs with recombinant mouse Dkk1, and the efficiency of EPCs attachment and outgrowth was obviously increased when we treated cultured EPCs with antisense β-catenin ODN. Taken together, Dkk1 secreted by decidual cells may induce trophoblast cell invasion in the mouse and β-catenin may be involved in such functions of Dkk1.

2013 ◽  
Vol 220 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Dang-Dang Li ◽  
Ying-Jie Gao ◽  
Xue-Chao Tian ◽  
Zhan-Qing Yang ◽  
Hang Cao ◽  
...  

Tryptophan 2,3-dioxygenase (Tdo2) is a rate-limiting enzyme which directs the conversion of tryptophan to kynurenine. The aim of this study was to examine the expression and regulation of Tdo2 in mouse uterus during decidualization. Tdo2 mRNA was mainly expressed in the decidua on days 6–8 of pregnancy. By real-time PCR, a high level of Tdo2 expression was observed in the uteri from days 6 to 8 of pregnancy, although Tdo2 expression was observed on days 1–8. Simultaneously, Tdo2 mRNA was also detected under in vivo and in vitro artificial decidualization. Estrogen, progesterone, and 8-bromoadenosine-cAMP could induce the expression of Tdo2 in the ovariectomized mouse uterus and uterine stromal cells. Tdo2 could regulate cell proliferation and stimulate the expression of decidual marker Dtprp in the uterine stromal cells and decidual cells. Overexpression of Tdo2 could upregulate the expression of Ahr, Cox2, and Vegf genes in uterine stromal cells, while Tdo2 inhibitor 680C91 could downregulate the expression of Cox2 and Vegf genes in uterine decidual cells. These data indicate that Tdo2 may play an important role during mouse decidualization and be regulated by estrogen, progesterone, and cAMP.


2017 ◽  
Author(s):  
Yue Chen ◽  
Hui Zhang ◽  
Fang Han ◽  
Lei Yue ◽  
Chunxiao Qiao ◽  
...  

AstractThe mammalian placenta is a remarkable organ. It serves as the interface between the mother and the fetus. Proper invasion of trophoblast cells into the maternal decidua is required for a successful pregnancy. Previous studies have found that the adhesion molecule integrin β4 plays important roles during trophoblast cell invasion. Here, we found that the overall birth rate of the MARVELD1 knockout mouse is much lower than that of the wild-type mouse (P<0.001). In E18.5 MARVELD1 knockout mice, we observed an over-invasion of trophoblast cells, and indeed, the pregnant mice had a partial placenta accreta phenotype. The HTR8/SVneo cell line was used as an in vitro model to elucidate the underlying mechanisms of MARVELD1-mediated trophoblast invasion. We detected a diminished expression of integrin β4 upon the downregulation of MARVELD1 and enhanced migration and invasive abilities of trophoblast cells both in vivo and in vitro. The integrin β4 rescue assay also supported the results. In conclusion, this study found that MARVELD1 mediated the invasion of trophoblast cells via regulating the expression of integrin β4.


Reproduction ◽  
2020 ◽  
Vol 159 (3) ◽  
pp. 303-314
Author(s):  
Yanni Jia ◽  
Rui Cai ◽  
Tong Yu ◽  
Ruixue Zhang ◽  
Shouqin Liu ◽  
...  

Decidualization is a critical process for successful embryo implantation and subsequent placenta formation. The characterization and physiological function of lncRNA during decidualization remain largely unknown. In the present study, we conducted RNA-sequencing analysis to compare gene expression between decidua of days 6 and 8, and normal pregnant endometrium (day 4). A total of 2332 high-confidence putative lncRNA transcripts were expressed. Functional clustering analysis of cis and trans lncRNA targets showed that differentially expressed lncRNAs may regulate multiple gene ontology terms and pathways that have important functions in decidualization. Subsequent analyses using qRT-PCR validated that eight of all lncRNAs were differentially regulated in mice uteri during decidualization, both in vivo and in vitro. Furthermore, we showed that differentially expressed lncRNA of Hand2os1 was specifically detected in stromal cells on days 2 to 5 of pregnancy and was strongly upregulated in decidual cells on days 6–8 of pregnancy. Similarly, Hand2os1 expression was also strongly expressed in decidualized cells following artificial decidualization, both in vivo and in vitro. In uterine stromal cells, P4 was able to significantly upregulate the expression of Hand2os1, but upregulation was impeded by RU486, whereas E2 appeared to have no regulating effect on Hand2os1 expression. Concurrently, Hand2os1 significantly promoted the decidual process in vitro and dramatically increased decidualization markers Prl8a2 and Prl3c1. Our results provide a valuable catalog for better understanding of the functional roles of lncRNAs in pregnant mouse uteri, as it relates to decidualization.


2009 ◽  
Vol 21 (9) ◽  
pp. 27
Author(s):  
H. Singh ◽  
G. Nie

Controlled invasion of extravillous trophoblast (EVT) through the maternal decidua is important for placental development and function. Serine protease HtrA3 is highly expressed in the decidual cells in the late secretory phase of the menstrual cycle and throughout pregnancy. It is highly expressed in first trimester in most trophoblast cell types, but not in the invading interstitial trophoblast. HtrA3 and its family members are down-regulated in a number of cancers and are proposed as tumor-suppressors. We hypothesized that HtrA3 is an inhibitor of trophoblast invasion and is down-regulated in invading EVTs, while up-regulation of decidual HtrA3 controls the process. The current study investigated HtrA3 expression in human endometrial stromal cells (HESC) during decidualization in vitro and whether HtrA3 inhibits EVT cell invasion. Stromal cells isolated from human endometrium were decidualized in vitro with estrogen, progesterone and cAMP. Quantitative RT-PCR and western showed HtrA3 mRNA and protein expression was significantly increased in decidualized HESC compared to controls. Indirect immunofluorescence showed homogeneous pattern and increase in intensity of HtrA3 staining in decidualized HESC compared to non-decidualized cells. HTR-8 cells derived from first trimester of pregnancy EVT showed higher levels of HtrA3 mRNA expression compared to other human choriocarcinoma cell lines (AC-1M88, AC-1M32, JEG-3 and BeWo). Both intracellular and extracellular HtrA3 staining was observed in HTR8 cells. Functional role of HtrA3 in cell invasion was determined in HTR-8 cells using an in vitro invasion assay. Exogenous addition of mutant HtrA3 (inhibitor) resulted in a significant increase in HTR-8 cells invading through matrigel coated membrane compared with controls. TGFβ-1 (as positive control) completely inhibited invasion of HTR-8 cells. HtrA3 is tightly regulated during decidualization of HESC in vitro. Inhibition of HtrA3 activity in trophoblastic HTR-8 cells increased invasiveness supporting its functional role during placental development.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 480
Author(s):  
Rakshitha Pandulal Miskin ◽  
Janine S. A. Warren ◽  
Abibatou Ndoye ◽  
Lei Wu ◽  
John M. Lamar ◽  
...  

In the current study, we demonstrate that integrin α3β1 promotes invasive and metastatic traits of triple-negative breast cancer (TNBC) cells through induction of the transcription factor, Brain-2 (Brn-2). We show that RNAi-mediated suppression of α3β1 in MDA-MB-231 cells caused reduced expression of Brn-2 mRNA and protein and reduced activity of the BRN2 gene promoter. In addition, RNAi-targeting of Brn-2 in MDA-MB-231 cells decreased invasion in vitro and lung colonization in vivo, and exogenous Brn-2 expression partially restored invasion to cells in which α3β1 was suppressed. α3β1 promoted phosphorylation of Akt in MDA-MB-231 cells, and treatment of these cells with a pharmacological Akt inhibitor (MK-2206) reduced both Brn-2 expression and cell invasion, indicating that α3β1-Akt signaling contributes to Brn-2 induction. Analysis of RNAseq data from patients with invasive breast carcinoma revealed that high BRN2 expression correlates with poor survival. Moreover, high BRN2 expression positively correlates with high ITGA3 expression in basal-like breast cancer, which is consistent with our experimental findings that α3β1 induces Brn-2 in TNBC cells. Together, our study demonstrates a pro-invasive/pro-metastatic role for Brn-2 in breast cancer cells and identifies a role for integrin α3β1 in regulating Brn-2 expression, thereby revealing a novel mechanism of integrin-dependent breast cancer cell invasion.


2010 ◽  
Vol 42 (2) ◽  
pp. 310-316 ◽  
Author(s):  
Stephanie L. Pierce ◽  
William Kutschke ◽  
Rafael Cabeza ◽  
Sarah K. England

Transgenic and knockout mouse models have proven useful in the study of genes necessary for parturition—including genes that affect the timing and/or progression of labor contractions. However, taking full advantage of these models will require a detailed characterization of the contractile patterns in the mouse uterus. Currently the best methodology for this has been measurement of isometric tension in isolated muscle strips in vitro. However, this methodology does not provide a real-time measure of changes in uterine pressure over the course of pregnancy. Recent advances have opened the possibility of using radiotelemetric devices to more accurately and comprehensively study intrauterine pressure in vivo. We tested the effectiveness of this technology in the mouse, in both wild-type (WT) mice and a mouse model of defective parturition (SK3 channel-overexpressing mice), after surgical implant of telemetry transmitters into the uterine horn. Continuous recordings from day 18 of pregnancy through delivery revealed that WT mice typically deliver during the 12-h dark cycle after 19.5 days postcoitum. In these mice, intrauterine pressure gradually increases during this cycle, to threefold greater than that measured during the 12-h cycle before delivery. SK3-overexpressing mice, by contrast, exhibited lower intrauterine pressure over the same period. These results are consistent with the outcome of previous in vitro studies, and they indicate that telemetry is an accurate method for measuring uterine contraction, and hence parturition, in mice. The use of this technology will lead to important novel insights into changes in intrauterine pressure during the course of pregnancy.


2021 ◽  
Vol 22 (23) ◽  
pp. 12921
Author(s):  
Irina Giralt ◽  
Gabriel Gallo-Oller ◽  
Natalia Navarro ◽  
Patricia Zarzosa ◽  
Guillem Pons ◽  
...  

The Wnt/β-catenin signaling pathway plays a pivotal role during embryogenesis and its deregulation is a key mechanism in the origin and progression of several tumors. Wnt antagonists have been described as key modulators of Wnt/β-catenin signaling in cancer, with Dickkopf-1 (DKK-1) being the most studied member of the DKK family. Although the therapeutic potential of DKK-1 inhibition has been evaluated in several diseases and malignancies, little is known in pediatric tumors. Only a few works have studied the genetic inhibition and function of DKK-1 in rhabdomyosarcoma. Here, for the first time, we report the analysis of the therapeutic potential of DKK-1 pharmaceutical inhibition in rhabdomyosarcoma, the most common soft tissue sarcoma in children. We performed DKK-1 inhibition via shRNA technology and via the chemical inhibitor WAY-2626211. Its inhibition led to β-catenin activation and the modulation of focal adhesion kinase (FAK), with positive effects on in vitro expression of myogenic markers and a reduction in proliferation and invasion. In addition, WAY-262611 was able to impair survival of tumor cells in vivo. Therefore, DKK-1 could constitute a molecular target, which could lead to novel therapeutic strategies in RMS, especially in those patients with high DKK-1 expression.


2015 ◽  
Vol 13 (1) ◽  
pp. 720-730 ◽  
Author(s):  
LIPING OU ◽  
LIAOQIONG FANG ◽  
HEJING TANG ◽  
HAI QIAO ◽  
XIAOMEI ZHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document