scholarly journals A cancer stem cell origin for human endometrial carcinoma?

Reproduction ◽  
2010 ◽  
Vol 140 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Sonya A Hubbard ◽  
Caroline E Gargett

Endometrial cancer (EC) is the most common gynaecological malignancy affecting women in the western world. Cancer stem cells (CSCs) are defined as a subset of tumour cells with the capacity to self-renew and give rise to the differentiated cells that comprise the bulk of the tumour. Given that a rare population of epithelial stem/progenitor cells has been identified in human endometrium, it is possible that these cells or their progeny may be the source of the putative CSCs that may initiate and maintain EC. Studies have shown that some cells within EC have the capacity to initiate clones that undergo self-renewing cell division and form tumoursin vivothat can be serially passaged, demonstrating self-renewal, proliferation and differentiation abilities of the potential EC stem cells (ECSCs). These potential ECSCs may be located within the tumour cell population expressing CD133 and/or within the side population. With the discovery of markers for ECSCs, it is hoped that ECSCs can be isolated and characterised, and that their role in the development of human EC will be further investigated. This knowledge opens the way for the development of new treatment modalities that target the CSCs, but spares normal endometrial stem/progenitor cells and other cells. Such treatments will be particularly useful for early-stage and pre-menopausal EC candidates where the uterus may be conserved, and for late-stage cases where hysterectomy is not curative and current treatments target the bulk tumour cells rather than CSCs.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 799-799
Author(s):  
Farid Ahmed ◽  
Natalia Arseni ◽  
Wolfgang Hiddemann ◽  
Christian Buske ◽  
Michaela Feuring-Buske

Abstract Adult hematopoietic stem cells can be identified by the ability to rapidly efflux the Hoechst 33342 dye and consequently produce a characteristic side population (SP) phenotype. ABCG2 (Human Breast Cancer Resistance Protein, BCRP) is the molecular determinant of the SP phenotype. We have demonstrated previously that the SP phenotype together with the expression of CD34 and lack of CD38 distinguishes between normal and leukemic stem cells in patients with acute myeloid leukemia (AML), suggesting a role of this protein in early human hematopoiesis. To test this, normal highly purified human CD34+ cord blood cells were transduced retrovirally by ABCG2/YFP and analyzed for their in vitro and in vivo behaviour. In vitro constitutive expression of ABCG2 doubled the number of the most immature CFU-GEMM type colonies in the CFC assays (n=12; p< 0.002). Furthermore, the protein enhanced the replating capacity of primary colonies with a mean 3.0 fold increase in the number of 2nd colonies (n=9; p< 0.01), indicating a substantial enhancement of the proliferative potential of clonogenic progenitors by constitutive ABCG2 expression. In contrast, ABCG2 did not induce any major increase in the frequency of LTC-IC compared to the YFP control after 5 days as assessed by limiting dilution LTC-IC (1 LTC-IC per 3911 cells and 1 LTC-IC per 3641 cells, respectively). To study the impact of ABCG2 on human progenitor cells in vivo NOD/SCID mice were injected with highly purified ABCG2/YFP+ cells and analyzed 8 weeks after transplantation for human engraftment. Although mice in the ABCG2 group received less transduced cells than the control (on average 1.2 x 105 versus 3.7 x 105 per mouse, respectively), they showed significant higher engraftment compared to the control group (6.1 x 107 transduced cells (4.3–8.2) versus 4.2 x 107 (3.2–5.7) per mouse, respectively; p<0.04). Mice that received ABCG2-transduced cells showed a 4.6fold increase in the number of engrafted CD34+ progenitor cells (1.4x 107 CD34+CD45+ vs 6.5x 106; p<0.05). In addition, ABCG2 expression resulted in 2.2-fold increase of c-KIT+ cells (6.1x106 cells vs. 2.8 x 106 cells in the control arm; p< 0.02) indicating that the constitutive expression of ABCG2 enhanced the number of human primitive progenitor cells. ABCG2 expression was also associated with an expansion in the CD15+ /CD33+ human myeloid compartment: in the control mice 1.1 x 107 human transduced myeloid cells (CD15+) were detected per mouse compared to 2.6 x 107 in the ABCG2 group 8 weeks post transplant (p<0.05) whereas the human CD19+ lymphoid compartment was not changed. This resulted in an inversion of the ratio of engrafted CD19+/CD15+ human lymphoid/myeloid cells (mean of 0.5 for ABCG2 vs 1.1 in the control; p<0.03). Furthermore, constitutive expression of ABCG2 promoted erythroid differentiation with a 3.6fold increase in glycophorin A expressing erythroid cells (9 x 106 vs 2.5 x 106 GlyA+ cells in the control; p < 0.003). Taken together, our data characterize ABCG2 as a previously unrecognized potent positive regulator of primitive hematopoietic cell growth in vitro and in vivo and extend our so far limited knowledge about human stem cell regulation by this ABC transporter.


Toxins ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 157 ◽  
Author(s):  
Adriana Tomoko Nishiya ◽  
Marcia Kazumi Nagamine ◽  
Ivone Izabel Mackowiak da Fonseca ◽  
Andrea Caringi Miraldo ◽  
Nayra Villar Scattone ◽  
...  

Canine oral mucosal melanomas (OMM) are the most common oral malignancy in dogs and few treatments are available. Thus, new treatment modalities are needed for this disease. Bacillus anthracis (anthrax) toxin has been reengineered to target tumor cells that express urokinase plasminogen activator (uPA) and metalloproteinases (MMP-2), and has shown antineoplastic effects both, in vitro and in vivo. This study aimed to evaluate the effects of a reengineered anthrax toxin on canine OMM. Five dogs bearing OMM without lung metastasis were included in the clinical study. Tumor tissue was analyzed by immunohistochemistry for expression of uPA, uPA receptor, MMP-2, MT1-MMP and TIMP-2. Animals received either three or six intratumoral injections of the reengineered anthrax toxin prior to surgical tumor excision. OMM samples from the five dogs were positive for all antibodies. After intratumoral treatment, all dogs showed stable disease according to the canine Response Evaluation Criteria in Solid Tumors (cRECIST), and tumors had decreased bleeding. Histopathology has shown necrosis of tumor cells and blood vessel walls after treatment. No significant systemic side effects were noted. In conclusion, the reengineered anthrax toxin exerted inhibitory effects when administered intratumorally, and systemic administration of this toxin is a promising therapy for canine OMM.


2021 ◽  
Vol 22 (4) ◽  
pp. 1824
Author(s):  
Matthias Mietsch ◽  
Rabea Hinkel

With cardiovascular diseases affecting millions of patients, new treatment strategies are urgently needed. The use of stem cell based approaches has been investigated during the last decades and promising effects have been achieved. However, the beneficial effect of stem cells has been found to being partly due to paracrine functions by alterations of their microenvironment and so an interesting field of research, the “stem- less” approaches has emerged over the last years using or altering the microenvironment, for example, via deletion of senescent cells, application of micro RNAs or by modifying the cellular energy metabolism via targeting mitochondria. Using autologous muscle-derived mitochondria for transplantations into the affected tissues has resulted in promising reports of improvements of cardiac functions in vitro and in vivo. However, since the targeted treatment group represents mainly elderly or otherwise sick patients, it is unclear whether and to what extent autologous mitochondria would exert their beneficial effects in these cases. Stem cells might represent better sources for mitochondria and could enhance the effect of mitochondrial transplantations. Therefore in this review we aim to provide an overview on aging effects of stem cells and mitochondria which might be important for mitochondrial transplantation and to give an overview on the current state in this field together with considerations worthwhile for further investigations.


Author(s):  
Aida Nourbakhsh ◽  
Brett M. Colbert ◽  
Eric Nisenbaum ◽  
Aziz El-Amraoui ◽  
Derek M. Dykxhoorn ◽  
...  

AbstractProgressive non-syndromic sensorineural hearing loss (PNSHL) is the most common cause of sensory impairment, affecting more than a third of individuals over the age of 65. PNSHL includes noise-induced hearing loss (NIHL) and inherited forms of deafness, among which is delayed-onset autosomal dominant hearing loss (AD PNSHL). PNSHL is a prime candidate for genetic therapies due to the fact that PNSHL has been studied extensively, and there is a potentially wide window between identification of the disorder and the onset of hearing loss. Several gene therapy strategies exist that show potential for targeting PNSHL, including viral and non-viral approaches, and gene editing versus gene-modulating approaches. To fully explore the potential of these therapy strategies, a faithful in vitro model of the human inner ear is needed. Such models may come from induced pluripotent stem cells (iPSCs). The development of new treatment modalities by combining iPSC modeling with novel and innovative gene therapy approaches will pave the way for future applications leading to improved quality of life for many affected individuals and their families.


2012 ◽  
Vol 26 (8) ◽  
pp. 857-871 ◽  
Author(s):  
J. P. Fonseca ◽  
P. A. Steffen ◽  
S. Muller ◽  
J. Lu ◽  
A. Sawicka ◽  
...  

Blood ◽  
2011 ◽  
Vol 117 (18) ◽  
pp. 4773-4777 ◽  
Author(s):  
Hal E. Broxmeyer ◽  
Man-Ryul Lee ◽  
Giao Hangoc ◽  
Scott Cooper ◽  
Nutan Prasain ◽  
...  

Abstract Cryopreservation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) is crucial for cord blood (CB) banking and transplantation. We evaluated recovery of functional HPC cryopreserved as mononuclear or unseparated cells for up to 23.5 years compared with prefreeze values of the same CB units. Highly efficient recovery (80%-100%) was apparent for granulocyte-macrophage and multipotential hematopoietic progenitors, although some collections had reproducible low recovery. Proliferative potential, response to multiple cytokines, and replating of HPC colonies was extensive. CD34+ cells isolated from CB cryopreserved for up to 21 years had long-term (≥ 6 month) engrafting capability in primary and secondary immunodeficient mice reflecting recovery of long-term repopulating, self-renewing HSCs. We recovered functionally responsive CD4+ and CD8+ T lymphocytes, generated induced pluripotent stem (iPS) cells with differentiation representing all 3 germ cell lineages in vitro and in vivo, and detected high proliferative endothelial colony forming cells, results of relevance to CB biology and banking.


2014 ◽  
Vol 42 (3) ◽  
pp. 637-644 ◽  
Author(s):  
Alessandro W. Amici ◽  
Fatai O. Onikoyi ◽  
Paola Bonfanti

Recent evidence supports and reinforces the concept that environmental cues may reprogramme somatic cells and change their natural fate. In the present review, we concentrate on environmental reprogramming and fate potency of different epithelial cells. These include stratified epithelia, such as the epidermis, hair follicle, cornea and oesophagus, as well as the thymic epithelium, which stands alone among simple and stratified epithelia, and has been shown recently to contain stem cells. In addition, we briefly discuss the pancreas as an example of plasticity of intrinsic progenitors and even differentiated cells. Of relevance, examples of plasticity and fate change characterize pathologies such as oesophageal metaplasia, whose possible cell origin is still debated, but has important implications as a pre-neoplastic event. Although much work remains to be done in order to unravel the full potential and plasticity of epithelial cells, exploitation of this phenomenon has already entered the clinical arena, and might provide new avenues for future cell therapy of these tissues.


2018 ◽  
Vol 46 (2) ◽  
pp. 829-846 ◽  
Author(s):  
Fang Wei ◽  
Tong Zhang ◽  
Zhi Yang ◽  
Jian-Chang Wei ◽  
Hong-Fen Shen ◽  
...  

Background/Aims: Gambogic acid (GA), the main active compound of Gamboge hanburyi, has been reported to be a potential novel antitumor drug. Whether GA inhibits putative cancer stem cells (CSCs), which are considered to be the major cause of cancer treatment failure, remains largely unknown. This study investigated whether GA inhibits the CSCs of colorectal cancer (CRC) and its possible mechanisms. Methods: We performed CCK8 and tumor sphere formation assays, percentage analysis of both side population and CD133+CD44+ cells, and the detection of stem cells markers, in order to assess the role of GA in inhibiting the stem celllike features of CRC. An mRNA microarray was performed to identify the downstream gene affected by GA and rescue assays were performed to further clarify whether the downstream gene is involved in the GA induced decrease of the stem cell-like CRC population. CRC cells were engineered with a CSC detector vector encoding GFP and luciferase (Luc) under the control of the Nanog promoter, which were utilized to investigate the effect of GA on putative CSC in human tumor xenograft-bearing mice using in vivo bioluminescence imaging. Results: Our results showed that GA significantly reduced tumor sphere formation and the percentages of side population and CD133+CD44+ cells, while also decreasing the expression of stemness and EMT-associated markers in CRC cells in vitro. GA killed stem-like CRC cells by upregulating the expression of ZFP36, which is dependent on the inactivation of the EGFR/ ERK signaling pathway. GFP+ cells harboring the PNanog-GFP-T2A-Luc transgene exhibited CSC characteristics. The in vivo results showed that GA significantly inhibited tumor growth in nude mice, accompanied by a remarkable reduction in the putative CSC number, based on whole-body bioluminescence imaging. Conclusion: These findings suggest that GA significantly inhibits putative CSCs of CRC both in vitro and in vivo by inhibiting the activation of the EGFR/ ERK/ZFP36 signaling pathway and may be an effective drug candidate for anticancer therapies.


2016 ◽  
Vol 113 (16) ◽  
pp. E2306-E2315 ◽  
Author(s):  
Vashe Chandrakanthan ◽  
Avani Yeola ◽  
Jair C. Kwan ◽  
Rema A. Oliver ◽  
Qiao Qiao ◽  
...  

Current approaches in tissue engineering are geared toward generating tissue-specific stem cells. Given the complexity and heterogeneity of tissues, this approach has its limitations. An alternate approach is to induce terminally differentiated cells to dedifferentiate into multipotent proliferative cells with the capacity to regenerate all components of a damaged tissue, a phenomenon used by salamanders to regenerate limbs. 5-Azacytidine (AZA) is a nucleoside analog that is used to treat preleukemic and leukemic blood disorders. AZA is also known to induce cell plasticity. We hypothesized that AZA-induced cell plasticity occurs via a transient multipotent cell state and that concomitant exposure to a receptive growth factor might result in the expansion of a plastic and proliferative population of cells. To this end, we treated lineage-committed cells with AZA and screened a number of different growth factors with known activity in mesenchyme-derived tissues. Here, we report that transient treatment with AZA in combination with platelet-derived growth factor–AB converts primary somatic cells into tissue-regenerative multipotent stem (iMS) cells. iMS cells possess a distinct transcriptome, are immunosuppressive, and demonstrate long-term self-renewal, serial clonogenicity, and multigerm layer differentiation potential. Importantly, unlike mesenchymal stem cells, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner and, unlike embryonic or pluripotent stem cells, do not form teratomas. Taken together, this vector-free method of generating iMS cells from primary terminally differentiated cells has significant scope for application in tissue regeneration.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Francesco Perdisa ◽  
Natalia Gostyńska ◽  
Alice Roffi ◽  
Giuseppe Filardo ◽  
Maurilio Marcacci ◽  
...  

Among the current therapeutic approaches for the regeneration of damaged articular cartilage, none has yet proven to offer results comparable to those of native hyaline cartilage. Recently, it has been claimed that the use of mesenchymal stem cells (MSCs) provides greater regenerative potential than differentiated cells, such as chondrocytes. Among the different kinds of MSCs available, adipose-derived mesenchymal stem cells (ADSCs) are emerging due to their abundancy and easiness to harvest. However, their mechanism of action and potential for cartilage regeneration are still under investigation, and many other aspects still need to be clarified. The aim of this systematic review is to give an overview ofin vivostudies dealing with ADSCs, by summarizing the main evidence for the treatment of cartilage disease of the knee.


Sign in / Sign up

Export Citation Format

Share Document