scholarly journals Role of ATRX in chromatin structure and function: implications for chromosome instability and human disease

Reproduction ◽  
2011 ◽  
Vol 142 (2) ◽  
pp. 221-234 ◽  
Author(s):  
Rabindranath De La Fuente ◽  
Claudia Baumann ◽  
Maria M Viveiros

Functional differentiation of chromatin structure is essential for the control of gene expression, nuclear architecture, and chromosome stability. Compelling evidence indicates that alterations in chromatin remodeling proteins play an important role in the pathogenesis of human disease. Among these, α-thalassemia mental retardation X-linked protein (ATRX) has recently emerged as a critical factor involved in heterochromatin formation at mammalian centromeres and telomeres as well as facultative heterochromatin on the murine inactive X chromosome. Mutations in human ATRX result in an X-linked neurodevelopmental condition with various degrees of gonadal dysgenesis (ATRX syndrome). Patients with ATRX syndrome may exhibit skewed X chromosome inactivation (XCI) patterns, and ATRX-deficient mice exhibit abnormal imprinted XCI in the trophoblast cell line. Non-random or skewed XCI can potentially affect both the onset and severity of X-linked disease. Notably, failure to establish epigenetic modifications associated with the inactive X chromosome (Xi) results in several conditions that exhibit genomic and chromosome instability such as fragile X syndrome as well as cancer development. Insight into the molecular mechanisms of ATRX function and its interacting partners in different tissues will no doubt contribute to our understanding of the pathogenesis of ATRX syndrome as well as the epigenetic origins of aneuploidy. In turn, this knowledge will be essential for the identification of novel drug targets and diagnostic tools for cancer progression as well as the therapeutic management of global epigenetic changes commonly associated with malignant neoplastic transformation.

Author(s):  
Pietro Poggio ◽  
Matteo Sorge ◽  
Laura Seclì ◽  
Mara Brancaccio

HSP90 is released by cancer cells in the tumor microenvironment where it associates with different co-chaperones generating complexes with specific functions, ranging from folding and activation of extracellular clients to the stimulation of cell surface receptors. Emerging data indicate that these functions are essential for tumor growth and progression. The understanding of the exact composition of extracellular HSP90 complexes and the molecular mechanisms at the basis of their functions in the tumor microenvironment may represent the first step to design innovative diagnostic tools and new effective therapies. Here we review the impact of extracellular HSP90 complexes on cancer cell signaling and behavior.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1372
Author(s):  
Bruna Prunes Pena Baroni Viana ◽  
Amanda Vitória Pampolha Gomes ◽  
Etel Rodrigues Pereira Gimba ◽  
Luciana Bueno Ferreira

Thyroid cancer is the most common tumor arising from the endocrine system and generally presents good prognosis. However, its aggressive subtypes are related to therapeutic resistance and early metastasis. Epithelial–mesenchymal transition (EMT) and its reverse process, the mesenchymal–epithelial transition (MET), are key events mediating cancer progression, including in thyroid cancer. The matricellular protein osteopontin (OPN) has been reported as a master regulator of EMT in many tumor types. Although high OPN expression has been described and associated with important aspects of thyroid cancer progression, there is no clear evidence regarding OPN as a regulator of EMT in thyroid cancer. Thus, taking together the known roles of OPN in the modulation of EMT in cancer and the information reporting the expression of OPN in thyroid tumor progression, this review aims at summarizing and discussing data related to EMT in thyroid cancer and its putative relation to the roles of OPN in the development of thyroid cancer. These data provide new insights into the molecular mechanisms by which OPN could potentially modulate EMT in thyroid tumors, generating evidence for future studies that may contribute to new therapeutic, prognostic and/or diagnostic tools.


2018 ◽  
Author(s):  
Natasha Jansz ◽  
Andrew Keniry ◽  
Marie Trussart ◽  
Heidi Bildsoe ◽  
Tamara Beck ◽  
...  

AbstractThe regulation of higher order chromatin structure is complex and dynamic; however we do not yet understand the full suite of mechanisms governing architecture. Here we reveal the non-canonical SMC protein Smchd1 as a novel regulator of long-range chromatin interactions, and add it to the canon of epigenetic proteins required for Hox gene regulation. The effect of losing Smchd1-dependent chromatin interactions has varying outcomes dependent on chromatin context. At autosomal targets transcriptionally sensitive to Smchd1 deletion, we find increased short-range interactions and ectopic enhancer activation. By contrast, the inactive X chromosome is transcriptionally refractive to Smchd1 ablation, despite chromosome-wide increases in short-range interactions. There we observe spreading of H3K27me3 domains into regions not normally decorated by this mark. Together these data suggest Smchd1 has the capacity to insulate the chromatin, thereby limiting access to other chromatin modifying proteins.


2020 ◽  
Vol 17 (6) ◽  
pp. 499-507
Author(s):  
Kaushik Chanda ◽  
Debashis Mukhopadhyay

Neurodegenerative Diseases (NDD) are the major contributors to age-related causes of mental disability on a global scale. Most NDDs, like Alzheimer’s Disease (AD), are complex in nature - implying that they are multi-parametric both in terms of heterogeneous clinical outcomes and underlying molecular paradigms. Emerging evidence from high throughput genomic, transcriptomic and small RNA sequencing experiments hint at the roles of long non-coding RNAs (lncRNAs) in AD. X-inactive Specific Transcript (XIST), a component of the Xic, the X-chromosome inactivation centre, is an RNA gene on the X chromosome of the placental mammals indispensable for the X inactivation process. An extensive literature survey shows that aberrations in Xist expression and in some cases, a disruption of the Xchromosome inactivation as a whole play a significant role in AD. Considering the enormous potential of Xist as an endogenous silencing molecule, the idea of using Xist as a non-conventional chromosome silencer to treat diseases harboring chromosomal alterations is also being implemented. Comprehensive knowledge about how Xist could play such a role in AD is still elusive. In this review, we have collated the available knowledge on the possible Xist involvement and deregulation from the perspective of molecular mechanisms governing NDDs with a primary focus on Alzheimer’s disease. Possibilities of XIST mediated therapeutic intervention and linkages between XIC and preferential predisposition of females to AD have also been discussed.


2020 ◽  
Author(s):  
Thaidy Moreno ◽  
Laura González-Silva ◽  
Beatriz Monterde ◽  
Isabel Betancor-Fernández ◽  
Carlos Revilla ◽  
...  

ABSTRACTThe survival rate in lung cancer remains stubbornly low and there is an urgent need for the identification of new therapeutic targets. Last decade’s research has evidenced a clear role of chromatin structure in cancer development and several members of the SWI/SNF chromatin remodeling complexes have been described altered in different tumor types. Nevertheless, the precise mechanisms of their impact on cancer progression, as well as the application of this knowledge to cancer patient management are largely unknown.In this study, we have performed targeted sequencing of a cohort of lung cancer patients on genes involved in chromatin structure, as well as functional experiments to identify the molecular mechanisms linking alterations of chromatin remodeling genes and tumor development.We have identified ARID2 production loss in 20% of lung cancer patients. Additionally, we have shown that ARID2-deficiency provokes profound chromatin structural changes, alters the transcriptional programme and impairs DNA repair which bolster the proliferative and metastatic potential of the cells both in vitro and in vivo. Moreover, we have demonstrated that ARID2 deficiency significantly affects the sensitivity of the cells to PARP inhibition.All these results support that ARID2 is a bona-fide tumor suppressor gene in lung cancer that might be exploited therapeutically.


Sign in / Sign up

Export Citation Format

Share Document