scholarly journals Gh is produced by the testis of Japanese eel and stimulates proliferation of spermatogonia

Reproduction ◽  
2011 ◽  
Vol 142 (6) ◽  
pp. 869-877 ◽  
Author(s):  
Chiemi Miura ◽  
Yosuke Shimizu ◽  
Maho Uehara ◽  
Yuichi Ozaki ◽  
Graham Young ◽  
...  

Gh plays important roles in development, somatic growth and gametogenesis in vertebrates. To determine the physiological role of Gh in reproduction in male teleosts, the expression of genes encoding Gh and the two Gh receptors (Ghrs) during spermatogenesis, and the action of Ghin vitrowas examined using the Japanese eel (Anguilla japonica).gh,ghr1andghr2mRNA transcripts were detected in all spermatogenic stages.In situhybridization showed the presence ofghr1andghr2mRNA in the germ cells. Immunohistochemistry using an antiserum against eel Gh indicated that Gh protein was localized to Sertoli cells surrounding the germ cells in early spermatogenesis. Recombinant eel Gh induced spermatogonial proliferation in a testis organ culture system, an effect that was independent from the production of steroid hormones or Igf1. This study identifies a role for eel Gh in the regulation of early spermatogenesis, particularly in the mitotic phase of spermatogenesis, that is not mediated by either steroid hormones or Igf1 production.

2011 ◽  
Vol 22 (17) ◽  
pp. 3263-3275 ◽  
Author(s):  
T. T. Giang Ho ◽  
Audrey Stultiens ◽  
Johanne Dubail ◽  
Charles M. Lapière ◽  
Betty V. Nusgens ◽  
...  

RhoGTPases are key signaling molecules regulating main cellular functions such as migration, proliferation, survival, and gene expression through interactions with various effectors. Within the RhoA-related subclass, RhoA and RhoC contribute to several steps of tumor growth, and the regulation of their expression affects cancer progression. Our aim is to investigate their respective contributions to the acquisition of an invasive phenotype by using models of reduced or forced expression. The silencing of RhoC, but not of RhoA, increased the expression of genes encoding tumor suppressors, such as nonsteroidal anti-inflammatory drug–activated gene 1 (NAG-1), and decreased migration and the anchorage-independent growth in vitro. In vivo, RhoC small interfering RNA (siRhoC) impaired tumor growth. Of interest, the simultaneous knockdown of RhoC and NAG-1 repressed most of the siRhoC-related effects, demonstrating the central role of NAG-1. In addition of being induced by RhoC silencing, NAG-1 was also largely up-regulated in cells overexpressing RhoA. The silencing of RhoGDP dissociation inhibitor α (RhoGDIα) and the overexpression of a RhoA mutant unable to bind RhoGDIα suggested that the effect of RhoC silencing is indirect and results from the up-regulation of the RhoA level through competition for RhoGDIα. This study demonstrates the dynamic balance inside the RhoGTPase network and illustrates its biological relevance in cancer progression.


2015 ◽  
Vol 54 (2) ◽  
pp. 125-135 ◽  
Author(s):  
Juan Zhang ◽  
Yunting Zhou ◽  
Cheng Chen ◽  
Feiyuan Yu ◽  
Yun Wang ◽  
...  

Hypothalamic glucose-sensing neurons regulate the expression of genes encoding feeding-related neuropetides POMC, AgRP, and NPY – the key components governing metabolic homeostasis. AMP-activated protein kinase (AMPK) is postulated to be the molecular mediator relaying glucose signals to regulate the expression of these neuropeptides. Whether other signaling mediator(s) plays a role is not clear. In this study, we investigated the role of ERK1/2 using primary hypothalamic neurons as the model system. The primary neurons were differentiated from hypothalamic progenitor cells. The differentiated neurons possessed the characteristic neuronal cell morphology and expressed neuronal post-mitotic markers as well as leptin-regulated orexigenic POMC and anorexigenic AgRP/NPY genes. Treatment of cells with glucose dose-dependently increased POMC and decreased AgRP/NPY expression with a concurrent suppression of AMPK phosphorylation. In addition, glucose treatment dose-dependently increased the ERK1/2 phosphorylation. Blockade of ERK1/2 activity with its specific inhibitor PD98059 partially (approximately 50%) abolished glucose-induced POMC expression, but had little effect on AgRP/NPY expression. Conversely, blockade of AMPK activity with its specific inhibitor produced a partial (approximately 50%) reversion of low-glucose-suppressed POMC expression, but almost completely blunted the low-glucose-induced AgRP/NPY expression. The results indicate that ERK1/2 mediated POMC but not AgRP/NPY expression. Confirming the in vitro findings, i.c.v. administration of PD98059 in rats similarly attenuated glucose-induced POMC expression in the hypothalamus, but again had little effect on AgRP/NPY expression. The results are indicative of a novel role of ERK1/2 in glucose-regulated POMC expression and offer new mechanistic insights into hypothalamic glucose sensing.


2017 ◽  
Vol 86 (1) ◽  
pp. 76
Author(s):  
Bartosz Adam Frycz ◽  
Paweł Piotr Jagodziński

Overall incidence of gastric cancer (GC) in most populations is approximately two times higher in men than women. Therefore, steroid hormones are suspect to play a role in gastric carcinogenesis. Large amounts of steroid hormones in postmenopausal women and older men are synthesized in peripheral tissues through enzymatic conversion of blood derived precursors into active estrogens and androgens in so called, intracrine mechanism. Moreover, abnormal expression of genes encoding steroidogenic enzymes was shown in numerous malignant tumors including GC. These abnormalities can be associated with deregulated production of steroid hormones in gastric tissue and thus affect the risk of GC. For that reason this short review aims to summarize the current knowledge about the expression of genes involved in metabolism of steroid hormones in normal and malignant gastric mucosa and thus, estimate the potential of these tissues to intracrine synthesis of steroid hormones. This findings could be useful in understanding the role of above mechanism in GC and could help to find therapeutic approaches in future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Arun Sharma ◽  
Kalpana Sagar ◽  
Neeraj Kumar Chauhan ◽  
Balaji Venkataraman ◽  
Nidhi Gupta ◽  
...  

The extraordinary expansion of Toxin Antitoxin (TA) modules in the genome of Mycobacterium tuberculosis has received significant attention over the last few decades. The cumulative evidence suggests that TA systems are activated in response to stress conditions and are essential for M. tuberculosis pathogenesis. In M. tuberculosis, Rv1955-Rv1956-Rv1957 constitutes the only tripartite TAC (Toxin Antitoxin Chaperone) module. In this locus, Rv1955 (HigB1) encodes for the toxin and Rv1956 (HigA1) encodes for antitoxin. Rv1957 encodes for a SecB-like chaperone that regulates HigBA1 toxin antitoxin system by preventing HigA1 degradation. Here, we have investigated the physiological role of HigB1 toxin in stress adaptation and pathogenesis of Mycobacterium tuberculosis. qPCR studies revealed that higBA1 is upregulated in nutrient limiting conditions and upon exposure to levofloxacin. We also show that the promoter activity of higBA1 locus in M. tuberculosis is (p)ppGpp dependent. We observed that HigB1 locus is non-essential for M. tuberculosis growth under different stress conditions in vitro. However, guinea pigs infected with higB1 deletion strain exhibited significantly reduced bacterial loads and pathological damage in comparison to the animals infected with the parental strain. Transcriptome analysis suggested that deletion of higB1 reduced the expression of genes involved in virulence, detoxification and adaptation. The present study describes the role of higB1 toxin in M. tuberculosis physiology and highlights the importance of higBA1 locus during infection in host tissues.


2021 ◽  
Vol 12 ◽  
Author(s):  
Andrea Ardizzoni ◽  
Robert T. Wheeler ◽  
Eva Pericolini

Vulvovaginal candidiasis (VVC) is a symptomatic inflammation of the vagina mainly caused by C. albicans. Other species, such as C. parapsilosis, C. glabrata, C. tropicalis, and C. krusei, are mainly associated to the recurrent form of the disease (RVVC), although with a lower frequency. In its yeast form, C. albicans is tolerated by the vaginal epithelium, but switching to the invasive hyphal form, co-regulated with the expression of genes encoding virulence factors such as secreted aspartyl proteases (Sap) and candidalysin, allows for tissue damage. Vaginal epithelial cells play an important role by impairing C. albicans tissue invasion through several mechanisms such as epithelial shedding, secretion of mucin and strong interepithelial cell connections. However, morphotype switching coupled to increasing of the fungal burden can overcome the tolerance threshold and trigger an intense inflammatory response. Pathological inflammation is believed to be facilitated by an altered vaginal microbiome, i.e., Lactobacillus dysbiosis. Notwithstanding the damage caused by the fungus itself, the host response to the fungus plays an important role in the onset of VVC, exacerbating fungal-mediated damage. This response can be triggered by host PRR-fungal PAMP interaction and other more complex mechanisms (i.e., Sap-mediated NLRP3 activation and candidalysin), ultimately leading to strong neutrophil recruitment. However, recruited neutrophils appear to be ineffective at reducing fungal burden and invasion; therefore, they seem to contribute more to the symptoms associated with vaginitis than to protection against the disease. Recently, two aspects of the vulvovaginal environment have been found to associate with VVC and induce neutrophil anergy in vitro: perinuclear anti-neutrophil cytoplasmic antibodies (pANCA) and heparan sulfate. Interestingly, CAGTA antibodies have also been found with higher frequency in VVC as compared to asymptomatic colonized women. This review highlights and discusses recent advances on understanding the VVC pathogenesis mechanisms as well as the role of host defenses during the disease.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Amber R Paulson ◽  
Maureen O’Callaghan ◽  
Xue-Xian Zhang ◽  
Paul B Rainey ◽  
Mark R H Hurst

Abstract The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents.


Diabetologia ◽  
2021 ◽  
Author(s):  
Yukina Takeichi ◽  
Takashi Miyazawa ◽  
Shohei Sakamoto ◽  
Yuki Hanada ◽  
Lixiang Wang ◽  
...  

Abstract Aims/hypothesis Mitochondria are highly dynamic organelles continuously undergoing fission and fusion, referred to as mitochondrial dynamics, to adapt to nutritional demands. Evidence suggests that impaired mitochondrial dynamics leads to metabolic abnormalities such as non-alcoholic steatohepatitis (NASH) phenotypes. However, how mitochondrial dynamics are involved in the development of NASH is poorly understood. This study aimed to elucidate the role of mitochondrial fission factor (MFF) in the development of NASH. Methods We created mice with hepatocyte-specific deletion of MFF (MffLiKO). MffLiKO mice fed normal chow diet (NCD) or high-fat diet (HFD) were evaluated for metabolic variables and their livers were examined by histological analysis. To elucidate the mechanism of development of NASH, we examined the expression of genes related to endoplasmic reticulum (ER) stress and lipid metabolism, and the secretion of triacylglycerol (TG) using the liver and primary hepatocytes isolated from MffLiKO and control mice. Results MffLiKO mice showed aberrant mitochondrial morphologies with no obvious NASH phenotypes during NCD, while they developed full-blown NASH phenotypes in response to HFD. Expression of genes related to ER stress was markedly upregulated in the liver from MffLiKO mice. In addition, expression of genes related to hepatic TG secretion was downregulated, with reduced hepatic TG secretion in MffLiKO mice in vivo and in primary cultures of MFF-deficient hepatocytes in vitro. Furthermore, thapsigargin-induced ER stress suppressed TG secretion in primary hepatocytes isolated from control mice. Conclusions/interpretation We demonstrated that ablation of MFF in liver provoked ER stress and reduced hepatic TG secretion in vivo and in vitro. Moreover, MffLiKO mice were more susceptible to HFD-induced NASH phenotype than control mice, partly because of ER stress-induced apoptosis of hepatocytes and suppression of TG secretion from hepatocytes. This study provides evidence for the role of mitochondrial fission in the development of NASH. Graphical abstract


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2002
Author(s):  
Maria Pilar Solis-Hernandez ◽  
Carla Martín ◽  
Beatriz García ◽  
Natalia Pérez-López ◽  
Yolanda García-Mesa ◽  
...  

Small leucine-rich proteoglycans (SLRPs) regulate different processes and undergo significant alterations in various diseases. Colon carcinomas (CCs) are heterogeneous pathologies with important clinical and molecular differences depending on their location, which makes it interesting to analyze the alterations in SLRPs in right- and left-sided tumors (RS- and LSCCs). SLRP transcription levels were studied in 32 CCs using qPCR compared to healthy colon mucosae samples from the same patients, 20 of them from LSCCs and the remaining 12 from RSCCs. Protein expression of genes with significant differences in their transcriptions was analyzed by immunohistochemistry. The alterations observed were related to survival data. The arrangement of transcription of SLRPs was quite similar in ascending and descending colon, but RS- and LSCCs displayed different patterns of alteration, with a greater number of deregulations occurring in the latter. The analysis of protein expression also indicated changes in the location of these molecules, largely moving to the cell interior. While podocan underexpression showed a trend toward better outcomes, no differences were observed in terms of overall survival. In vitro studies using the HT29 tumor cell line suggest that deregulation of SLRPs could affect cell proliferation. SLRPs constitute new differential markers of RS- and LSCCs, showing differences dependent on the anatomical location of the tumor.


Blood ◽  
1969 ◽  
Vol 34 (3) ◽  
pp. 348-356 ◽  
Author(s):  
SEYMOUR WERTHAMER ◽  
CARL HICKS ◽  
LEONARD AMARAL

Abstract The in vitro effects of sterols, cholesterol and 3-methyl cholanthrene and steroids, cortisol, prednisolone and testosterone on protein synthesis in separate popultions of human lymphocytes and leukocytes has been investigated. It has been shown that all agents used result in the inhibition of protein synthesis under these conditions. It has also been shown that the inhibitory mechanism of the steroid hormones requires the presence of plasma, presumably as a protein binding factor in order to achieve its effect. The sterol, cholesterol and 3-methyl cholanthrene, in the absence of plasma, still inhibit amino acid incorporation. However, in the case of cholesterol, the magnitude of inhibition is lower than that observed in the presence of plasma, perhaps indicating a partial plasma dependence. The results presented therefore support the hypothesis that the inhibition of lymphocyte protein synthesis by steroid hormones occurs only when the steroid is bound to a plasma protein. The physiologic role of the plasma protein-cortisol complex and its relation to the condition of lymphopenia in man is discussed.


Sign in / Sign up

Export Citation Format

Share Document