scholarly journals The rete testis harbors Sertoli-like cells capable of expressing DMRT1

Reproduction ◽  
2019 ◽  
Vol 158 (5) ◽  
pp. 399-413 ◽  
Author(s):  
Ekaterina A Malolina ◽  
Andrey Yu Kulibin

Sertoli cells (SCs) are supporting cells in the mammalian testis that proliferate throughout fetal and postnatal development but exit the cell cycle and differentiate at puberty. In our previous study, we isolated a population of highly proliferative Sertoli-like cells (SLCs) from the region of the adult mouse testis containing the rete testis and adjacent seminiferous tubules. Here RNA-seq of the adult SLC culture as well as qPCR analysis and immunofluorescence of the adult and immature (6 dpp) SLC cultures were performed that allowed us to identify SLC-specific genes, including Pax8, Cdh1, and Krt8. Using these, we found that SLCs are mostly localized in the rete testis epithelium; however, some contribution of transitional zones of seminiferous tubules could not be excluded. The main feature of SLCs indicating their relationship to SCs is DMRT1 expression. More than 40% of both adult and immature SLCs expressed DMRT1 at different levels in culture. Only rare DMRT1+ cells were detected in the adult rete testis, whereas more than 40% of cells were positively stained for DMRT1 in the immature rete testis. One more SC protein, AMH, was found in some rete cells of the immature testis. It was also demonstrated that SLCs expressed such SC genes as Nr5a1, Dhh, Gdnf, and Kitl and interacted with germ cells in 3D co-culture with immature testicular cells. All these similarities between SLCs and rete cells on one the hand and SCs on the other, suggest that rete cells could share a common origin with SCs.

2020 ◽  
Vol 21 (12) ◽  
pp. 4358
Author(s):  
Shuai Wang ◽  
Pengxiang Wang ◽  
Dongli Liang ◽  
Yuan Wang

Sertoli cells are somatic supporting cells in spermatogenic niche and play critical roles in germ cell development, but it is yet to be understood how epigenetic modifiers regulate Sertoli cell development and contribution to spermatogenesis. BRG1 (Brahma related gene 1) is a catalytic subunit of the mammalian SWI/SNF chromatin remodeling complex and participates in transcriptional regulation. The present study aimed to define the functions of BRG1 in mouse Sertoli cells during mouse spermatogenesis. We found that BRG1 protein was localized in the nuclei of both Sertoli cells and germ cells in seminiferous tubules. We further examined the requirement of BRG1 in Sertoli cell development using a Brg1 conditional knockout mouse model and two Amh-Cre mouse strains to specifically delete Brg1 gene from Sertoli cells. We found that the Amh-Cre mice from Jackson Laboratory had inefficient recombinase activities in Sertoli cells, while the other Amh-Cre strain from the European Mouse Mutant Archive achieved complete Brg1 deletion in Sertoli cells. Nevertheless, the conditional knockout of Brg1 from Sertoli cells by neither of Amh-Cre strains led to any detectable abnormalities in the development of either Sertoli cells or germ cells, suggesting that BRG1-SWI/SNF complex is dispensable to the functions of Sertoli cells in spermatogenesis.


2021 ◽  
Vol 52 (6) ◽  
pp. 370-378
Author(s):  
A. Yu. Kulibin ◽  
E. A. Malolina

Abstract The rete testis connects seminiferous tubules in which germ cells develop to the efferent ducts and the epididymis, where gametes mature and gain mobility. Several recent studies have thoroughly explored the morphogenesis of this structure in mice during embryonic and postnatal periods. A part of the rete testis has been shown to derive from the precursors of gonad somatic cells before sex determination. The other part forms from embryonal Sertoli cells of testis cords adjacent to the mesonephros. The transformation of Sertoli cells into rete testis cells is apparently not limited to the embryonic stage of development and continues during postnatal testis development. Recently, it was found that the rete testis participates in the formation and maintenance of specialized Sertoli cells in terminal segments of seminiferous tubules, transitional zones. Current views suggest that the transitional zones of the seminiferous tubules may represent a niche for spermatogonial stem cells, the site of the prolonged proliferation of Sertoli cells in the pubertal and postpubertal periods of testis development, and also could be a generator of spermatogenic waves. To sum up, the rete testis transports gametes from the testis to the epididymis, maintains pressure within seminiferous tubules, regulates the composition of the testicular fluid, and impacts the spermatogenic process itself.


Author(s):  
William J. Kovacs

The testes are the source of both germ cells and hormones essential for male reproductive function. The production of both sperm and steroid hormones is under complex feedback control by the hypothalamic-pituitary system. The testis consists of a network of tubules for the production and transport of sperm to the excretory ducts and a system of interstitial cells (called Leydig cells) that express the enzymes required for the synthesis of androgens. The spermatogenic or seminiferous tubules are lined by a columnar epithelium composed of the germ cells themselves as well as supporting Sertoli cells surrounded by peritubular tissue made up of collagen, elastic fibers, and myofibrillar cells. Tight junctions between Sertoli cells at a site between the spermatogonia and the primary spermatocyte form a diffusion barrier that divides the testis into two functional compartments, basal and adluminal. The basal compartment consists of the Leydig cells surrounding the tubule, the peritubular tissue, and the outer layer of the tubule containing the spermatogonia. The adluminal compartment consists of the inner two-thirds of the tubules containing primary spermatocytes and germ cells in more advanced stages of development. The base of the Sertoli cell is adjacent to the basement membrane of the spermatogenic tubule, with the inner portion of the cell engulfing the developing germ cells so that spermatogenesis actually takes place within a network of Sertoli cell cytoplasm. The mechanism by which spermatogonia pass through the tight junctions between Sertoli cells to begin spermatogenesis is unknown. The close proximity of the Leydig cell to the Sertoli cell with its embedded germ cells is thought to be critical for normal male reproductive function. The seminiferous tubules empty into a network of ducts termed the rete testis. Sperm are then transported into a single duct, the epididymis. Anatomically, the epididymis can be divided into the caput, the corpus, and the cauda regions. The caput epididymidis consists of 8 to 12 ductuli efferentes, which have a larger lumen tapering to a narrower diameter at the junction of the ductus epididymidis.


1982 ◽  
Vol 155 (6) ◽  
pp. 1719-1729 ◽  
Author(s):  
U Hurtenbach ◽  
G M Shearer

Spleen cells from mice injected intravenously with syngeneic male germ cells exhibited reduced immune functions as determined by natural killer cell activity, mixed lymphocyte reactivity and cytotoxic lymphocyte (CTL) function. The decrease in CTL responses to trinitrophenyl-modified self (TNP-self) was detected as early as 4 d after sperm injection and was observed to H-2 alloantigens 3 wk after injection. Radiosensitive suppressor T cells were found to suppress the CTL response to TNP-self. Suppression lasted for a period of at least 7 wk after a single inoculation of the germ cells. Some variability in immune suppression capability was observed using different preparations of germ cells which are not yet completely understood. Sperm were more effective in inducing suppression than testicular cells derived from the seminiferous tubules. Furthermore, sperm from older animals were more effective than those from younger mice. These findings are discussed with respect to possible regulatory influences of germ cells on the immune system when the blood-testes barrier is broken.


Endocrinology ◽  
2005 ◽  
Vol 146 (3) ◽  
pp. 1035-1042 ◽  
Author(s):  
Susan Y. Park ◽  
J. Larry Jameson

The embryonic gonad is undifferentiated in males and females until a critical stage when the sex chromosomes dictate its development as a testis or ovary. This binary developmental process provides a unique opportunity to delineate the molecular pathways that lead to distinctly different tissues. The testis comprises three main cell types: Sertoli cells, Leydig cells, and germ cells. The Sertoli cells and germ cells reside in seminiferous tubules where spermatogenesis occurs. The Leydig cells populate the interstitial compartment and produce testosterone. The ovary also comprises three main cell types: granulosa cells, theca cells, and oocytes. The oocytes are surrounded by granulosa and theca cells in follicles that grow and differentiate during characteristic reproductive cycles. In this review, we summarize the molecular pathways that regulate the distinct differentiation of these cell types in the developing testis and ovary. In particular, we focus on the transcription factors that initiate these cascades. Although most of the early insights into the sex determination pathway were based on human mutations, targeted mutagenesis in mouse models has revealed key roles for genes not anticipated to regulate gonadal development. Defining these molecular pathways provides the foundation for understanding this critical developmental event and provides new insight into the causes of gonadal dysgenesis.


Development ◽  
1994 ◽  
Vol 120 (7) ◽  
pp. 1759-1766 ◽  
Author(s):  
K. Yomogida ◽  
H. Ohtani ◽  
H. Harigae ◽  
E. Ito ◽  
Y. Nishimune ◽  
...  

GATA-1 is an essential factor for the transcriptional activation of erythroid-specific genes, and is also abundantly expressed in a discrete subset of cells bordering the seminiferous epithelium in tubules of the murine testis. In examining normal and germ-line defective mutant mice, we show here that GATA-1 is expressed only in the Sertoli cell lineage in mouse testis. GATA-1 expression in Sertoli cells is induced concomitantly with the first wave of spermatogenesis, and GATA-1-positive cells are uniformly distributed among all tubules during prepubertal testis development. However, the number of GATA-1-positive cells declines thereafter and were found only in the peripheral zone of seminiferous tubules in stages VII, VIII and IX of spermatogenesis in the adult mouse testis. In contrast, virtually every Sertoli cell in mutant W/Wv, jsd/jsd or cryptorchid mice (all of which lack significant numbers of germ cells) expresses GATA-1, thus showing that the expression of this transcription factor is negatively controlled by the maturing germ cells. These observations suggest that transcription factor GATA-1 is a developmental stage- and spermatogenic cycle-specific regulator of gene expression in Sertoli cells.


1984 ◽  
Vol 102 (2) ◽  
pp. 269-274 ◽  
Author(s):  
G. S. Bilaspuri ◽  
S. S. Guraya

SummaryIsocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH), malate dehydrogenase (MDH), glutamate dehydrogenase (GDH), β-hydroxybutyrate dehydrogenase (β-OH-BDH) and glucose-6-phosphate dehydrogenase (G-6-PDH) were histochemically located in the testes of buffaloes, goats and rams. The enzyme activities varied with the enzyme, species and cell type. The activities in the seminiferous tubules were correlated with the stages of seminiferous epithelial cycle (SEC). During this cycle, the activities in the Sertoli cells, spermatogonia and spermatocytes remained unaltered in contrast to those in the spermatids. The activities of SDH, ICDH and MDH were relatively greater in buffalo, while goat and ram resembled each other quite closely. ICDH and MDH preferred NADP to NAD. In the three species, the activities of ICDH, SDH and MDH generally followed an increasing order. G-6-PDH was greater in the interstitial tissue of buffalo than in goat and ram; the maximum activity of this enzyme in each species was found in the spermatogonia. In comparison with G-6-PDH, GDH was less evident in the interstitial tissue of buffalo and goat; Sertoli cells and spermatogonia also showed relatively less MDH activity whereas the other germ cells may have relatively less, similar or more, GDH activity depending on the species. β-OHBDH activity was similar in the interstitial tissue of the three species, but in the seminiferous tubule, the activity was less in goat. But for GDH and β-OH-BDH which could show different results, the activities of other enzymes generally decreased from spermatogonia through spermatocytes to spermatids but increased during spermiogenesis. In spermatozoa, the enzymes were observed only in the mid-piece. The possible physiological significance of the results is discussed in relation to different metabolic pathways.


1980 ◽  
Vol 85 (3) ◽  
pp. 443-448 ◽  
Author(s):  
S. CARREAU ◽  
M. A. DROSDOWSKY ◽  
C. PISSELET ◽  
M. COUROT

Androgen-binding protein (ABP) was measured in the testes of 50-day-old lambs. The animals were hypophysectomized and treatment lasting for 5 days was begun 15 days after surgery. In hypophysectomized but otherwise untreated lambs (control group), no 5α-dihydrotestosterone binding was detectable in testicular cytosol. One out of four lambs gave a positive response with FSH treatment (25 fmol ABP/mg protein), whereas a restoration of the synthesis of ABP was noted in all LH-treated animals (19 ± 9 (s.e.m.) fmol ABP/mg, n = 4). No synergism between the two gonadotrophins was observed in lambs treated simultaneously with FSH and LH (19 ± 4 fmol ABP/mg, n = 5). Testosterone treatment elicited a greater response (37 ± 9 fmol ABP/mg, n = 5) than FSH or LH alone and the response was not increased by the simultaneous addition of FSH (38 ± 10 fmol ABP/mg, n = 5). Whatever the treatment, no influence was observed either on the number of supporting cells (undifferentiated Sertoli cells) or the length of the seminiferous tubules (P > 0·05); the diameter of tubules was significantly increased in the group treated with FSH and LH. It is postulated that testosterone may have a direct effect on the production of ABP by the supporting cells of the impuberal lamb.


Reproduction ◽  
2014 ◽  
Vol 148 (6) ◽  
pp. H1-H9 ◽  
Author(s):  
Mai Shinomura ◽  
Kasane Kishi ◽  
Ayako Tomita ◽  
Miyuri Kawasumi ◽  
Hiromi Kanezashi ◽  
...  

Cell ablation technology is useful for studying specific cell lineages in a developing organ in vivo. Herein, we established a novel anti-Müllerian hormone (AMH)-toxin receptor-mediated cell knockout (Treck) mouse line, in which the diphtheria toxin (DT) receptor was specifically activated in Sertoli and granulosa cells in postnatal testes and ovaries respectively. In the postnatal testes of Amh-Treck transgenic (Tg) male mice, DT injection induced a specific loss of the Sertoli cells in a dose-dependent manner, as well as the specific degeneration of granulosa cells in the primary and secondary follicles caused by DT injection in Tg females. In the testes with depletion of Sertoli cell, germ cells appeared to survive for only several days after DT treatment and rapidly underwent cell degeneration, which led to the accumulation of a large amount of cell debris within the seminiferous tubules by day 10 after DT treatment. Transplantation of exogenous healthy Sertoli cells following DT treatment rescued the germ cell loss in the transplantation sites of the seminiferous epithelia, leading to a partial recovery of the spermatogenesis. These results provide not only in vivo evidence of the crucial role of Sertoli cells in the maintenance of germ cells, but also show that the Amh-Treck Tg line is a useful in vivo model of the function of the supporting cell lineage in developing mammalian gonads.


1991 ◽  
Vol 129 (1) ◽  
pp. 35-NP ◽  
Author(s):  
S. Francavilla ◽  
G. Cordeschi ◽  
G. Properzi ◽  
L. Di Cicco ◽  
E. A. Jannini ◽  
...  

ABSTRACT The relationship between thyroid function and testicular development in the rat was investigated. Hypothyroidism was induced during fetal or postnatal life by adding methimazole (MMI) to the drinking water of pregnant or lactating mothers. A group of newborn rats was treated with MMI and i.p. injections of l-tri-iodothyronine (l-T3). Hypothyroidism was shown by the reduced serum levels of total T3 and of total thyroxine (T4) in pregnant mothers and in pubertal rats. Testes were studied using light microscopy at 18 and 21 days post coitum or during puberty (21, 35 and 50 days after birth); serum levels of gonadotrophins were also evaluated in pubertal rats. Hypothyroidism had no effect on testicular development during fetal life and when induced in newborn rats it was associated at puberty with reduced serum levels of FSH and LH and with delayed maturation of the testis compared with control rats. The delay in maturation consisted of a reduction in the diameter of seminiferous tubules, and a reduction in the number of germ cells per tubule; this was associated with increased degeneration and arrested maturation of germ cells. In addition, Sertoli cells demonstrated retarded development, as indicated by a delay in the appearance of cytoplasmic lipids and in the development of a tubule lumen. Hormonal and morphological abnormalities were absent in rats treated with MMI plus l-T3. In conclusion, hypothyroidism occurring soon after birth caused reduced levels of gonadotrophins in the serum and a delay in pubertal spermatogenesis, possibly due to retarded differentiation of the Sertoli cells. Journal of Endocrinology (1991) 129, 35–42


Sign in / Sign up

Export Citation Format

Share Document