scholarly journals Lipid and fatty acid analysis of fresh and frozen-thawed immature and in vitro matured bovine oocytes

Reproduction ◽  
2001 ◽  
pp. 131-138 ◽  
Author(s):  
JY Kim ◽  
M Kinoshita ◽  
M Ohnishi ◽  
Y Fukui

The lipid content and fatty acid composition of fresh immature and in vitro matured bovine oocytes cultured in media with or without serum, and also those of frozen-thawed immature oocytes were analysed. All oocytes were ranked (A or B) on the basis of their cytoplasmic quality. Fatty acid composition (mol %; w/w) in the total lipid fraction was analysed by gas chromatography. Triglyceride, total cholesterol, phospholipid (phosphocholine-containing phospholipid) and non-esterified fatty acid contents of immature and in vitro matured oocytes were determined using lipid analysis kits. Phosphocholine-containing phospholipid and non-esterified fatty acid contents were determined in frozen-thawed immature bovine oocytes. Palmitic acid was the most abundant fatty acid in immature oocytes (A: 35%, B: 36%), and in in vitro matured oocytes cultured in the medium containing serum (A: 36%, B: 35%) or polyvinyl alcohol (A: 33%, B: 36%). Oleic acid was the second most abundant fatty acid in all A ranked oocytes, whereas stearic acid was the second most abundant fatty acid in all B ranked oocytes. There were significant differences (P < 0.05) in linoleic and arachidonic acid fractions between A and B ranked immature oocytes. In vitro matured oocytes had significantly (P < 0.05) lower proportions of linoleic and arachidonic acids, and significantly (P < 0.01) lower contents of triglyceride and total cholesterol compared with those of immature oocytes. The fatty acid composition of in vitro matured oocytes cultured in medium containing fetal calf serum or polyvinyl alcohol was similar, but significant differences (P < 0.01) in triglyceride and the total cholesterol content were observed. There was a significant decrease (P < 0.05) in the arachidonic acid proportion in frozen-thawed immature oocytes compared with that in fresh immature oocytes. In addition, significant (P < 0.05) decreases in both phospholipid (15.8--10.6 pmol) and non-esterified fatty acid (11.0--4.1 pmol) were found in frozen--thawed immature oocytes. The results indicate that lipids are available for use as an energy source for maturation and that serum lipids are incorporated into the oocyte cytoplasm during in vitro maturation. The changes in the lipid content (mainly phospholipid) and fatty acid composition were also observed in frozen--thawed immature oocytes. The study indicates that the alteration of fatty acid composition in bovine oocytes might improve maturation and cryopreservation.

2008 ◽  
Vol 100 (4) ◽  
pp. 829-833 ◽  
Author(s):  
Françoise Stanke-Labesque ◽  
Patrick Molière ◽  
Jeanine Bessard ◽  
Martine Laville ◽  
Evelyne Véricel ◽  
...  

n-3 PUFA supplementation helps in the prevention or treatment of inflammatory diseases and CVD. However, many supplementations reported so far are either a combination of n-3 PUFA or used large daily amounts of n-3 PUFA dosages. The present study investigated the influence of increasing dose intake of DHA on the fatty acid composition of phospholipids in neutrophils and on their capability to produce leukotrienes (LT) B4 and B5in vitro. Twelve healthy volunteers were supplemented with increasing daily doses of DHA (200, 400, 800 and 1600 mg, each dose in TAG containing DHA as the only PUFA and for a 2-week period). At the end of each supplementation period, neutrophil fatty acid composition, and LTB4 and LTB5 production were determined by GC and liquid chromatography–tandem MS, respectively. The DHA/arachidonic acid ratio increased in a dose-dependent manner with respect to the increasing doses of DHA supplementation and was significantly different from baseline after supplementation with either 400, 800 or 1600 mg DHA. The LTB5/LTB4 ratio was significantly increased compared to baseline after supplementation with 800 and 1600 mg DHA. LTB5/LTB4 and DHA/arachidonic acid ratios were correlated (r 0·531, P < 0·0001). The present data suggest that both changes in neutrophil lipid composition and LT production occurred with daily supplementation with 800 and 1600 mg DHA. The clinical benefits associated with these doses of DHA in inflammatory diseases remain to be investigated.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1253
Author(s):  
Chae-Hyung Sun ◽  
Jae-Sung Lee ◽  
Jalil Ghassemi Nejad ◽  
Won-Seob Kim ◽  
Hong-Gu Lee

We evaluated the effects of a rumen-protected microencapsulated supplement from linseed oil (MO) on ruminal fluid, growth performance, meat quality, and fatty acid composition in Korean native steers. In an in vitro experiment, ruminal fluid was taken from two fistulated Holstein dairy cows. Different levels of MO (0%, 1%, 2%, 3%, and 4%) were added to the diet. In an in vivo experiment, eight steers (average body weight = 597.1 ± 50.26 kg; average age = 23.8 ± 0.12 months) were assigned to two dietary groups, no MO (control) and MO (3% MO supplementation on a DM basis), for 186 days. The in vitro study revealed that 3% MO is an optimal dose, as there were decreases in the neutral detergent fiber and acid detergent fiber digestibility at 48 h (p < 0.05). The in vivo study showed increases in the feed efficiency and average daily gain in the 3% MO group compared to the control group on days 1 to 90 (p < 0.05). Regarding meat quality, the shear force produced by the longissimus thoracis muscle in steers from the 3% MO group was lower than that produced by the control group (p < 0.05). Interestingly, in terms of the fatty acid profile, higher concentrations of C22:6n3 were demonstrated in the subcutaneous fat and higher concentrations of C18:3n3, C20:3n3, and C20:5n3 were found in the intramuscular fat from steers fed with 3% MO (p < 0.05). Our results indicate that supplementation with 3% MO supplements improves the growth performance and meat quality modulated by the omega-3 fatty acid content of meat in Korean native steers.


Author(s):  
M. Guidoni ◽  
M.M. de Christo Scherer ◽  
M.M. Figueira ◽  
E.F.P. Schmitt ◽  
L.C. de Almeida ◽  
...  

1978 ◽  
Vol 174 (2) ◽  
pp. 585-593 ◽  
Author(s):  
Catherine T. Hammer ◽  
Eric D. Wills

The fatty acid compositions of the lipids and the lipid peroxide concentrations and rates of lipid peroxidation were determined in suspensions of liver endoplasmic reticulum isolated from rats fed on synthetic diets in which the fatty acid composition had been varied but the remaining constituents (protein, carbohydrate, vitamins and minerals) kept constant. Stock diet and synthetic diets containing no fat, 10% corn oil, herring oil, coconut oil or lard were used. The fatty acid composition of the liver endoplasmic reticulum lipid was markedly dependent on the fatty acid composition of the dietary lipid. Feeding a herring-oil diet caused incorporation of 8.7% eicosapentaenoic acid (C20:5) and 17% docosahexaenoic acid (C22:6), but only 5.1% linoleic acid (C18:2) and 6.4% arachidonic acid (C20:4), feeding a corn-oil diet caused incorporation of 25.1% C18:2, 17.8% C20:4 and 2.5% C22:6 fatty acids, and feeding a lard diet caused incorporation of 10.3% C18:2, 13.5% C20:4 and 4.3% C22:6 fatty acids into the liver endoplasmic-reticulum lipids. Phenobarbitone injection (100mg/kg) decreased the incorporation of C20:4 and C22:6 fatty acids into the liver endoplasmic reticulum of rats fed on a lard, corn-oil or herring-oil diet. Microsomal lipid peroxide concentrations and rates of peroxidation in the presence of ascorbate depended on the nature and quantity of the polyunsaturated fatty acids in the diet. The lipid peroxide content was 1.82±0.30nmol of malonaldehyde/mg of protein and the rate of peroxidation was 0.60±0.08nmol of malonaldehyde/min per mg of protein after feeding a fat-free diet, and the values were increased to 20.80nmol of malonaldehyde/mg of protein and 3.73nmol of malonaldehyde/min per mg of protein after feeding a 10% herring-oil diet in which polyunsaturated fatty acids formed 24% of the total fatty acids. Addition of α-tocopherol to the diets (120mg/kg of diet) caused a very large decrease in the lipid peroxide concentration and rate of lipid peroxidation in the endoplasmic reticulum, but addition of the synthetic anti-oxidant 2,6-di-t-butyl-4-methylphenol to the diet (100mg/kg of diet) was ineffective. Treatment of the animals with phenobarbitone (1mg/ml of drinking water) caused a sharp fall in the rate of lipid peroxidation. It is concluded that the polyunsaturated fatty acid composition of the diet regulates the fatty acid composition of the liver endoplasmic reticulum, and this in turn is an important factor controlling the rate and extent of lipid peroxidation in vitro and possibly in vivo.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 238 ◽  
Author(s):  
Malin Barman ◽  
Karin Jonsson ◽  
Agnes E. Wold ◽  
Ann-Sofie Sandberg

Growing up in a farm environment is protective against allergy development. Various explanations have been put forward to explain this association. Fatty acids are regulators of immune function and the composition of fatty acids in the circulation system may affect immune development. Here, we investigate whether the fatty acid composition of cord serum differs for infants born to Farm (n = 26) or non-Farm mothers (n =29) in the FARMFLORA birth-cohort. For comparison, the levels of fatty acids in the maternal diet, serum and breast milk around 1 month post-partum were recorded. The fatty acids in the cord sera from infants born to Farm mothers had higher proportions of arachidonic acid (20:4 n-6) and adrenic acid (22:4 n-6) than those from infants born to non-Farm mothers. No differences were found for either arachidonic acid or adrenic acid in the diet, samples of the serum, or breast milk from Farm and non-Farm mothers obtained around 1 month post-partum. The arachidonic and adrenic acid levels in the cord blood were unrelated to allergy outcome for the infants. The results suggest that a farm environment may be associated with the fatty acid composition to which the fetus is exposed during pregnancy.


1996 ◽  
Vol 271 (2) ◽  
pp. R417-R425 ◽  
Author(s):  
C. Agnisola ◽  
D. J. McKenzie ◽  
E. W. Taylor ◽  
C. L. Bolis ◽  
B. Tota

Dietary polyunsaturated fatty acids (PUFA) of the n-3 series that have beneficial effects on mammalian heart function are typically found at high levels in fish tissues. The effects of dietary fatty acid composition on cardiac function were investigated in the sturgeon. When compared with sturgeon maintained for 1 yr on a diet enriched with saturated fatty acids (SFA) (the coconut oil-supplemented diet, COD), sturgeon maintained on a diet enriched with n-3 PUFA (the fish oil-supplemented diet, FOD) had higher myocardial 20:5(n-3) and lower 20:4(n-6) content with a consequent decrease in the n-6-to-n-3 ratio (from 0.86 to 0.25) and a lower intrinsic in vitro heart rate (22.0 +/- 1.5 vs. 29.9 +/- 1.0 beats/min) and cardiac power output (PO) (0.33 +/- 0.08 vs. 0.48 +/- 0.03 mW/g), but had a greater in vitro scope for cardiac work (almost twice the maximal-to-basal PO ratio). Reducing the oxygen supply to the hearts significantly decreased, by approximately 40%, the maximal in vitro PO in the COD group of animals but had no effect in the FOD group. These differences in performance were not reflected in heart rate or blood pressure in vivo, either in normoxia or hypoxia. Addition of vitamin E as an antioxidant to the diets reduced intrinsic heart rate by approximately 25% but did not influence the effects (dietary fatty acid composition on in vitro cardiac performance. The results indicate that dietary n-3 PUFA can have beneficial effects on the resistance of the fish heart to environmental stressors such as hypoxia.


Sign in / Sign up

Export Citation Format

Share Document