scholarly journals Experimental and Numerical Analysis of the Shear Properties of Honeycomb Cores Produced Using Additive Technologies

2021 ◽  
Vol 24 (4) ◽  
pp. 71-76
Author(s):  
Ihor I. Derevianko ◽  
◽  
Borys V. Uspenskyi ◽  
Kostiantyn V. Avramov ◽  
Oleksandr F. Salenko ◽  
...  

An approach to the experimental and computational study of the shear properties of honeycomb cores (HC) produced using Fused Deposition Modeling (FDM) technology is proposed. The experimental approach is based on a new sample type for testing HCs for shear. This sample contains two HCs and three steel plates. Shear tests are carried out in the TiraTest 2300 universal tensile testing machine. The HCs are made of ULTEM 9085 and PLA with FDM technology, which is implemented in the 3D Fortus 900 system. The tests resulted in obtaining the shear properties of the HCs by averaging the stress-strain curves of five samples. As follows from the analysis of the experimental results, brittle destruction of an HC is observed. Before its destruction, the value of shear deformation for samples made of PLA was 0.0134, and for samples made of ULTEM, 0.0257. The experimental analysis was accompanied by numerical finite element (FE) modeling of shear experiments, taking into account the deformation of the equipment. With the FE modeling of the experiments, to describe the behavior of the samples, it is necessary to take into account the influence, on the measurements of the shear properties, of the equipment and the deformation of each honeycomb cell. The deformation of three plates was taken into account; the elastic properties of the adhesive joint were not taken into account. A computer model of the deformation of the HCs with equipment was built using ANSYS Design Modeler. With FE modeling, only the elastic behavior of the HCs was considered.

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2528
Author(s):  
Ivan Grgić ◽  
Vjekoslav Wertheimer ◽  
Mirko Karakašić ◽  
Željko Ivandić

The lack of standardization in tissue testing procedures results in a variety of custom-made devices. In the case of the determination of the mechanical properties of tendons, it is sometimes necessary to adapt the existing laboratory equipment for conducting experiments when specific commercial equipment is not applicable to solve issues such as proper gripping to prevent tendon slipping and rupturing, gripping control and manoeuvrability in case of tendon submerging and without contamination of the testing liquid. This paper presents the systematic development, design, and fabrication using 3D printing technology and the application of the double-acting linear pneumatic actuator to overcome such issues. It is designed to do its work submerged in the Ringers’ solution while gripping the tendon along with the clamps. The pneumatic foot valve unit of the Shimadzu AGS-X tensile testing machine controls the actuator thus preventing Ringers’ solution to be contaminated by the machine operator during specimen set-up. The actuator has a length of 60 mm, a bore of 50 mm, and a stroke length of 20 mm. It is designed to operate with an inlet pressure of up to 0.8 MPa. It comprises the cylinder body with the integrated thread, the piston, the piston head, and the gripper jaw. Fused deposition modeling (FDM) has been used as the 3D printing technique, along with polylactic acid (PLA) as the material for 3D printing. The 3D printed double-acting linear pneumatic actuator was developed into an operating prototype. This study could open new frontiers in the field of tissue testing and the development of similar specialized devices for medical purposes.


2017 ◽  
Vol 4 (4) ◽  
pp. 339-346 ◽  
Author(s):  
Nectarios Vidakis ◽  
Markos Petousis ◽  
Achilles Vairis ◽  
Konstantinos Savvakis ◽  
Athena Maniadi

Abstract Acrylonitrile–butadiene–styrene (ABS) is commonly used material in the fused deposition modeling (FDM) process. In this work, ABS and ABS plus parts were built with different building parameters and they were tested according to the ASTM D695 standard. Compression strength results were compared to stock ABS material values. The fracture surfaces of selected specimens were examined under a Scanning Electron Microscope (SEM), to determine the failure mode of the filament strands. Following this a Steward Platform part was tested under compression in a tensile testing machine. The experimental results were employed to develop a finite element model of the Steward Platform part, in order to determine the maximum force the part can withstand. The Finite Element Model results were in good agreement with the values measured in the Steward Platform part compressive tests, demonstrating that the model developed is reliable. In these experiments, it was found that ABS parts build with a larger layer thickness showed lower compressive strength, which ABS plus did not show. ABS specimens on average developed about half the compressive strength of the ABS plus specimens, while the ABS plus specimens showed lower compressive strength values than stock ABS material. Highlights ABS and ABS plus specimens were tested according to the ASTM D695 standard. A finite element model (FEM) of a Steward Platform part was developed and studied. The FEM results were experimentally verified. The FEM results were in agreement with the part compressive tests results. The model developed based on the compression experiments is reliable.


Author(s):  
Rachit Ranjan ◽  
Piyush Raote ◽  
Vivek Bajpai

Abstract A novel fused deposition modeling (FDM) based fabrication technique for Woven carbon fiber (WCF) reinforced PLA matrix laminated composite was proposed. The composite was fabricated by placing a layer of carbon fiber (CF) after every 5th layer of PLA matrix such that there was a total of 3 layers of CF in every tensile specimen fabricated. The parameter such as extrusion temperature, feed rate, and bed temperature was initially optimized by the Taguchi L9 optimization technique to get high-density low surface roughness specimens. Mechanical properties such as tensile strength and flexural strength of the specimen were measured in Hounsfield tensile testing machine. The composite has the yield and ultimate tensile strength of 43.378 MPa and 70.84 MPa which is 114.01% and 172.94% higher than the unreinforced specimen. The Flexural strength of the composite was found to be 117.88 MPa which is 17.91 % higher than the unreinforced 3D printed specimen. The proposed technique has offered a potential strategy to fabricate low-cost products with variable design for versatile applications such as aerospace and automobile industries.


2016 ◽  
Vol 61 (2) ◽  
pp. 645-650 ◽  
Author(s):  
K. Szlązak ◽  
J. Jaroszewicz ◽  
B. Ostrowska ◽  
T. Jaroszewicz ◽  
M. Nabiałek ◽  
...  

Abstract An optimal method for composites preparation as an input to rapid prototyping fabrication of scaffolds with potential application in osteochondral tissue engineering is still needed. Scaffolds in tissue engineering applications play a role of constructs providing appropriate mechanical support with defined porosity to assist regeneration of tissue. The aim of the presented study was to analyze the influence of composite fabrication methods on scaffolds mechanical properties. The evaluation was performed on polycaprolactone (PCL) with 5 wt% beta-tricalcium phosphate (TCP) scaffolds fabricated using fused deposition modeling (FDM). Three different methods of PCL-TCP composite preparation: solution casting, particles milling, extrusion and injection were used to provide material for scaffold fabrication. The obtained scaffolds were investigated by means of scanning electron microscope, x-ray micro computed tomography, thermal gravimetric analysis and static material testing machine. All of the scaffolds had the same geometry (cylinder, 4×6 mm) and fiber orientation (0/60/120°). There were some differences in the TCP distribution and formation of the ceramic agglomerates in the scaffolds. They depended on fabrication method. The use of composites prepared by solution casting method resulted in scaffolds with the best combination of compressive strength (5.7±0.2 MPa) and porosity (48.5±2.7 %), both within the range of trabecular bone.


2014 ◽  
Vol 1044-1045 ◽  
pp. 31-34 ◽  
Author(s):  
Mst Faujiya Afrose ◽  
S.H. Masood ◽  
Mostafa Nikzad ◽  
Pio Iovenitti

Fused Deposition Modelling (FDM) of thermoplastic materials is generally a well-known technology among all additive manufacturing (AM) technologies and therefore, it is essential to investigate the mechanical properties of such FDM processed materials. Several open-source and low cost AM machines, known as 3D Printers, have recently been developed using thermoplastic extrusion process based on the original FDM technology. Many of these 3D Printers use Polylactic Acid (PLA) plastic for building parts. The main objective of this paper is to investigate the tensile properties of the PLA thermoplastic material processed by the Cube-2 3D Printer. In this study, the dog-bone sized PLA specimens are printed in different build orientations and a Zwick Z010 tensile testing machine is used to determine the tensile properties of PLA in different build orientation.


2015 ◽  
Vol 21 (5) ◽  
pp. 604-617 ◽  
Author(s):  
Antonio Lanzotti ◽  
Marzio Grasso ◽  
Gabriele Staiano ◽  
Massimo Martorelli

Purpose – This study aims to quantify the ultimate tensile strength and the nominal strain at break (ɛf) of printed parts made from polylactic acid (PLA) with a Replicating Rapid prototyper (Rep-Rap) 3D printer, by varying three important process parameters: layer thickness, infill orientation and the number of shell perimeters. Little information is currently available about mechanical properties of parts printed using open-source, low-cost 3D printers. Design/methodology/approach – A computer-aided design model of a tensile test specimen was created, conforming to the ASTM:D638. Experiments were designed, based on a central composite design. A set of 60 specimens, obtained from combinations of selected parameters, was printed on a Rep-Rap Prusa I3 in PLA. Testing was performed using a JJ Instruments – T5002-type tensile testing machine and the load was measured using a load cell of 1,100 N. Findings – This study investigated the main impact of each process parameter on mechanical properties and the effects of interactions. The use of a response surface methodology allowed the proposition of an empirical model which connects process parameters and mechanical properties. Even though results showed a high variability, additional ideas on how to understand the impact of process parameters are suggested in this paper. Originality/value – On the basis of experimental results, it is possible to obtain practical suggestions to set common process parameters in relation to mechanical properties. Experiments discussed in the present paper provide a variety of data and insight regarding the relationship among the main process parameters and the stiffness and strength of fused deposition modeling-printed parts made from PLA. In particular, this paper underlines the shortage in existing literature concerning the impact of process parameters on the elastic modulus and the strain to failure for the PLA. The experimental data produced show a good degree of compliance with analytical formulations and other data found in literature.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1819 ◽  
Author(s):  
Simona-Nicoleta Mazurchevici ◽  
Andrei-Danut Mazurchevici ◽  
Dumitru Nedelcu

In order to find new ways to ensure sustainable development on a global level, it is essential to combine current top technologies, such as additive manufacturing, with the economic, ecological, and social fields. One objective of this paper refers to wire manufacture such as Arboblend V2 Nature, Arbofill Fichte, and Arboblend V2 Nature reinforced with Extrudr BDP “Pearl” (BDP—Biodegradable Plastic) in order to replace the plastic materials. After wire manufacture by extrusion, the diameter accuracy was analyzed compared with the Fiber Wood wire using SEM analyses and also EDAX—Energy Dispersive X-ray Analysis and DSC—Differential Scanning Calorimetry analyses were done in order to identify their elemental composition and the phase transitions suffered by the materials during heating. Using the samples obtained through the Fused Deposition Modeling (FDM) method, both crystalline phases and chemical composition information (XRD analysis) were identified, as well was determined the visco-elastic behavior Dynamic Mechanical Analysis (DMA), for the reinforced material and Fiber Wood. The extruded wires have allowed size for the printing equipment, around 1.75 mm with tolerance of ± 0.05 mm. The wire material diagrams, Arboblend V2 Nature reinforced with Extrudr BDP “Pearl” and Fiber Wood following the calorimetric analysis, presented peaks corresponding to material crystallization, while Arbofill Fichte revealed only the melting temperature. The storage module was almost double in case of Arboblend V2 Nature reinforced with Extrudr BDP “Pearl” compared with Fiber Wood and materials’ melting temperatures were confirmed by the analyses carried out.


2020 ◽  
Vol 26 (7) ◽  
pp. 1277-1288
Author(s):  
Mohammad Amin Rahiminia ◽  
Masoud Latifi ◽  
Mojtaba Sadighi

Purpose The purpose of this paper is to introduce an innovative transversal tubular braid texture and to study the elastic behavior of its 3 D printed structure comparatively to 3 D printed longitudinal tubular braid texture (maypole) to be used as reinforcement. Design/methodology/approach Regarding the lack of proper machines for the production of the proposed texture, the structure of samples was produced as a tubular lattice braid texture using a 3 D printer with the fused deposition modeling method subsequent to simulation by Rhinoceros software. The produced specimens were composited by polyurethane resin. The composite samples were evaluated by the split disk mechanical test to obtain their hoop stress. The structures of the reinforced composites were theoretically analyzed by ANSYS software. Findings The results of the mechanical test and theoretical analysis showed that the composites reinforced with transversal tubular lattice braid have higher strength compared to the composites reinforced with longitudinal ones. This assured that the composite reinforced by transversal tubular lattice braid is reliable to be used as high-performance tube for different applications. Originality/value Further work is carried out to produce the innovated complex structure continuously by a specially designed machine and fibrous materials to reinforce tubular composites in an industrial continual process to be applied for high-pressure fluids flows.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2579
Author(s):  
Waleed Ahmed ◽  
Sidra Siraj ◽  
Ali H. Al-Marzouqi

Due to the significant properties of silica, thermostatics can be enhanced using silica-additives to maximize the quality of polymer compounds and transform plastics into tailored properties. The silica additives can enhance the handling and quality performance of composites and thermoplastic polymers due to their diverse potential. Besides, using silica as an additive in different characteristics can allow granulates and powders to flow easily, minimize caking, and control rheology. On the other hand, the eruption of 3D printing technology has led to a massive new waste source of plastics, especially the polylactic acid (PLA) that is associated with the fused deposition modeling (FDM) process. In this paper, the impact on the mechanical properties when silica is mixed with waste PLA from 3D printing was studied. The PLA/silica mixtures were prepared using different blends through twin extruders and a Universal Testing Machine was used for the mechanical characterization. The result indicated that increasing silica composition resulted in the increase of the tensile strength to 121.03 MPa at 10 wt%. Similar trends were also observed for the toughness, ductility, and the yield stress values of the PLA/silica blends at 10 wt%, which corresponds to the increased mechanical property of the composite material reinforced by the silica particles. Improvement in the mechanical properties of the developed composite material promotes the effective recycling of PLA from applications such as 3D printing and the potential of reusing it in the same application.


2007 ◽  
Vol 342-343 ◽  
pp. 37-40
Author(s):  
Ye Yeon Won ◽  
Dae Gon Woo ◽  
Chi Hyun Kim ◽  
Myong Hyun Baek ◽  
Tae Woo Lee ◽  
...  

Considerable researchers analyzed the effects of hormone treatment on osteoporotic vertebral bones. Hormone treatment of age-related osteoporotic bone has a potential to decrease an incidence of osteoporosis. In the present paper, experimental and simulated tests for the mechanical characteristics of osteoporotic models and their hormone-treated models were investigated. Three dimensional (3D) geometries of the models (rapid prototyped and finite element models) were generated from high resolution micro-computed tomography ($-CT, Skyscan 1076, Skyscan, Belgium) scan data for the central parts of the second lumbar vertebrae. From these 3D geometries, cubic specimens with side length 6.5mm were formed and analyzed. Rapid prototyped (RP) models, instead of the real bone specimen, of vertebral trabecular bones were created in the fused deposition modeling (FDM) machine. In the present study, experimental compressions test for RP models were carried out by the INSTRON testing machine (8874 series, Instron, UK). The mechanical characteristics of finite element (FE) models for simulated compression tests were compared with physical predictions from RP models for experimental compression test. As a result, it is found that the hormone therapy is likely to be less effective than reported by previous researchers. A remarkable agreement was achieved between the results obtained from the experimental tests for RP models and simulated tests for FE models.


Sign in / Sign up

Export Citation Format

Share Document