T and B lymphocyte subpopulations

PEDIATRICS ◽  
1975 ◽  
Vol 55 (2) ◽  
pp. 157-160
Author(s):  
Robert C. Seeger ◽  
E. Richard Stiehm

The two major subpopulations of lymphocytes, T cells (thymus-dependent lymphocytes) and B cells (bursal equivalent or thymus-independent lymphocytes) have multiple roles in the immune system. In general, T cells are the functioning cells in the cellular immune system (delayed hypersensitivity, graft rejection, graft-versus hostreaction); and B cells, the precursors of plasma cells which form specific antibodies, are the functioning cells in the antibody immune system. It is now well recognized, however, that these cell types and immune systems usually do not function independently, but interact with one another in multiple ways and also with other, cells such as macrophages. For example, T cells may increase or suppress the production of antibodies by the B cell system, and macrophages may increase or suppress the response of T and B cells to antigens.

Author(s):  
jia liu ◽  
Xuecheng Yang ◽  
Hua Wang ◽  
Ziwei Li ◽  
Hui Deng ◽  
...  

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects millions of people and killed hundred-thousands of individuals. While acute and intermediate interactions between SARS-CoV-2 and the immune system have been studied extensively, long-term impacts on the cellular immune system remained to be analyzed. Here, we comprehensively characterized immunological changes in peripheral blood mononuclear cells in 49 COVID-19 convalescent individuals (CI) in comparison to 27 matched SARS-CoV-2 unexposed individuals (UI). Despite recovery from the disease for more than 2 months, CI showed significant decreases in frequencies of invariant NKT and NKT-like cells compared to UI. Concomitant with the decrease in NKT-like cells, an increase in the percentage of Annexin V and 7-AAD double positive NKT-like cells was detected, suggesting that the reduction in NKT-like cells results from cell death months after recovery. Significant increases in regulatory T cell frequencies, TIM-3 expression on CD4 and CD8 T cells, as well as PD-L1 expression on B cells were also observed in CI, while the cytotoxic potential of T cells and NKT-like cells, defined by GzmB expression, was significantly diminished. However, both CD4 and CD8 T cells of CI showed increased Ki67 expression and were fully capable to proliferate and produce effector cytokines upon TCR stimulation. Collectively, we provide the first comprehensive characterization of immune signatures in patients recovering from SARS-CoV-2 infection, suggesting that the cellular immune system of COVID-19 patients is still under a sustained influence even months after the recovery from disease.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Jia Liu ◽  
Xuecheng Yang ◽  
Hua Wang ◽  
Ziwei Li ◽  
Hui Deng ◽  
...  

ABSTRACT The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affected over 120 million people and killed over 2.7 million individuals by March 2021. While acute and intermediate interactions between SARS-CoV-2 and the immune system have been studied extensively, long-term impacts on the cellular immune system remain to be analyzed. Here, we comprehensively characterized immunological changes in peripheral blood mononuclear cells in 49 COVID-19-convalescent individuals (CI) in comparison to 27 matched SARS-CoV-2-unexposed individuals (UI). Despite recovery from the disease for more than 2 months, CI showed significant decreases in frequencies of invariant NKT and NKT-like cells compared to UI. Concomitant with the decrease in NKT-like cells, an increase in the percentage of annexin V and 7-aminoactinomycin D (7-AAD) double-positive NKT-like cells was detected, suggesting that the reduction in NKT-like cells results from cell death months after recovery. Significant increases in regulatory T cell frequencies and TIM-3 expression on CD4 and CD8 T cells were also observed in CI, while the cytotoxic potential of T cells and NKT-like cells, defined by granzyme B (GzmB) expression, was significantly diminished. However, both CD4 and CD8 T cells of CI showed increased Ki67 expression and were fully able to proliferate and produce effector cytokines upon T cell receptor (TCR) stimulation. Collectively, we provide a comprehensive characterization of immune signatures in patients recovering from SARS-CoV-2 infection, suggesting that the cellular immune system of COVID-19 patients is still under a sustained influence even months after the recovery from disease. IMPORTANCE Wuhan was the very first city hit by SARS-CoV-2. Accordingly, the patients who experienced the longest phase of convalescence following COVID-19 reside here. This enabled us to investigate the “immunological scar” left by SARS-CoV-2 on cellular immunity after recovery from the disease. In this study, we characterized the long-term impact of SARS-CoV-2 infection on the immune system and provide a comprehensive picture of cellular immunity of a convalescent COVID-19 patient cohort with the longest recovery time. We revealed that the cellular immune system of COVID-19 patients is still under a sustained influence even months after the recovery from disease; in particular, a profound NKT cell impairment was found in the convalescent phase of COVID-19.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3515-3515
Author(s):  
Muntasir M Majumder ◽  
Aino Maija Leppä ◽  
Caroline A Heckman

Abstract Introduction Off-target cytotoxicity resulting in severe side effects and compromising patient survival often hampers the development of new cancer therapeutics. Understanding the complete drug response landscape of different cell populations is crucial to identify drugs that selectively eradicate the malignant cell population, but spare healthy cells. Here, we developed a high content, no wash, multi-parametric flow cytometry based assay that enables testing of blood cancer patient samples and simultaneously monitors the effects of several drugs on 11 hematopoietic cell types. The assay can be used to i) dissect malignant from healthy cell responses and predict off-target effects; ii) assess drug effects on immune cell subsets; iii) identify drugs that can potentially be repositioned to new blood cancer indications. Methods Mononuclear cells were prepared from bone marrow aspirates of 7 multiple myeloma (MM) and 3 acute myeloid leukemia (AML) patients plus the peripheral blood from a healthy donor, which were collected following informed consent and in compliance with the Declaration of Helsinki. Optimal cell density, antibody dilutions, incubation time, and wash versus no wash assay conditions for the selected antibody panels were determined. Cells were incubated at a density of 2 million cells/ml in either 96- or 384-well plates for 3 days. The antibodies were tested in two panels to study the effects of 6 drugs in 5 dilutions (1-10000 nM) (clofarabine, bortezomib, dexamethasone, navitoclax, venetoclax and omipalisib) on 11 cell populations, namely hematopoietic stem cells (HSCs) (CD34+CD38-), common progenitor cells (CPCs) (CD34+CD38+), monocytes (CD14+), B cells (CD45+CD19+), cytotoxic T cells (CD45+CD3+CD8+), T helper cells (CD45+CD3+CD4+), NK-T cells (CD45+CD3+CD56+), NK cells (CD45+CD56+CD3-), clonal plasma cells (CD138+CD38+), other plasma cells (CD138+CD38-) and granulocytes (CD45+, SSC++). Annexin-V and 7AAD were used to distinguish live cell populations from apoptotic and dead cells. After 1 h incubation with antibodies, the plates were read with the iQue Screener PLUS instrument (Intellicyt). Counts for each population were used to generate four parameter nonlinear regression fitted dose response curves with GraphPad Prism 7. Three samples were tested in duplicate to assess reproducibility. Results To decrease the complexity of the assay, we tested all antibodies under wash and no wash conditions, and found that results from both conditions were comparable. To minimize the amount of sample needed as well as maximize the number of drugs tested and cell populations that can be detected, we set up the assay in both 96- and 384-well plates. The assay was highly reproducible when samples were tested in replicate and was scalable to a 384-well format without compromising sensitivity to detect rare populations such as plasma cells. Due to the differentiation of immature cells to specialized cell types, the drug responses of specific populations tended to drift. HSCs (CD34+CD38-) were shown to be refractory to the tested drugs compared to CPCs characterized as (CD34+CD38+) and other cell types. Interestingly, the proteasome inhibitor bortezomib was cytotoxic to all cell populations except for CD138+CD38- plasma cells. Clofarabine, a nucleoside analog used to treat ALL, effectively targeted CPC, NK and B cells, while HSCs and plasma cells were resistant. The glucocorticoid and immunosuppressive drug dexamethasone specifically targeted B and NK cells compared to T cell populations (CD8+, CD4+), while NK-T cells were modestly sensitive. The cell population response patterns were similar in samples derived from MM, AML and healthy individuals, highlighting that the drug responses are highly cell type specific. Summary Using a high content, multi-parametric assay, we could rapidly assess the effect of several drugs on specific cell populations in individual patient samples. Our results demonstrate that many drugs preferentially affect different hematological cell lineages. Although heterogeneity was observed between individual patients, the pattern of cytotoxic response exhibited by specific cell types was consistent among samples derived from MM, AML and healthy donors. The assay will be useful to identify drugs with maximal on-target and minimal off-target specificity, and can potentially be used to guide treatment decision and predict patient response Disclosures Heckman: Celgene: Research Funding; Pfizer: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (22) ◽  
pp. 4546-4559 ◽  
Author(s):  
Sara Calattini ◽  
Irini Sereti ◽  
Philip Scheinberg ◽  
Hiroshi Kimura ◽  
Richard W. Childs ◽  
...  

Epstein-Barr virus (EBV) is present in B cells in the blood of healthy people; few studies have looked for EBV in other cell types in blood from patients with lymphoproliferative disorders. We use a new technique combining immunofluorescent cell-surface staining and fluorescent in situ hybridization to quantify both EBV copy number per cell and cell types in blood from patients with high EBV DNA loads. In addition to CD20+ B cells, EBV was present in plasmablast/plasma cells in the blood of 50% of patients, in monocytes or T cells in a small proportion of patients, and in “non-B, non-T, non-monocytes” in 69% of patients. The mean EBV copy number in B cells was significantly higher than in plasmablast/plasma cells. There was no correlation between EBV load and virus copy number per cell. Although we detected CD21, the EBV B-cell receptor, on EBV-infected B cells, we could not detect it on virus-infected T cells. These findings expand the range of cell types infected in the blood. Determining the number of EBV genomes per cell and the type of cells infected in patients with high EBV loads may provide additional prognostic information for the development of EBV lymphoproliferative diseases.


2021 ◽  
Author(s):  
Nedaa Alomari ◽  
Farizeh Aalasm ◽  
Romina Nabiee ◽  
Jesus Ramirez Castano ◽  
Jennifer Totonchy

AbstractKaposi’s sarcoma-associated herpesvirus (KSHV) extensively manipulates the host immune system and the cytokine milieu, and cytokines are known to influence the progression of KSHV-associated diseases. However, the precise role of cytokines in the early stages of KSHV infection remains undefined. Here, using our unique model of KSHV infection in tonsil lymphocytes, we investigate the influence of host cytokines on the establishment of KSHV infection in B cells. Our data demonstrate that KSHV manipulates the host cytokine microenvironment during early infection and susceptibility generally associated with downregulation of multiple cytokines. However, we show that IL-21 signaling promotes KSHV infection by promoting both plasma cell numbers and increasing KSHV infection in plasma cells. Our data reveal that IL-21 producing T cells, particularly Th17/Tc17 and central memory CD8+ T cells may represent immunological factors that modulate host-level susceptibility to KSHV infection. These results suggest that IL-21 plays a significant role in the early stages of KSHV infection in the human immune system and may represent a novel mechanism to be further explored in the context of preventing KSHV transmission.Author SummaryVery little is known about how KSHV is transmitted and how it initially establishes infection in a new human host and this lack of information limits our ability to prevent KSHV-associated cancers by limiting its person-to-person transmission. Saliva is thought to be the primary route of person-to-person transmission for KSHV, making the tonsil a likely first site for KSHV replication in a new human host. In particular, the tonsil is likely to be the first place KSHV is able to enter B cells, which are thought to be a major site of persistent infection. Our previous work identified plasma cells as a highly targeted cell type in early KSHV infection in cultured cells from human tonsil. In this study, we show that the human cytokine IL-21 promotes both overall KSHV infection and the establishment of infection in plasma cells. We also investigate the immunological mechanisms underlying this effect. Our results demonstrate that IL-21 and IL-21-producing cells are a novel factor that influences the initial establishment of KSHV infection in humans.


1999 ◽  
Vol 63 (2) ◽  
pp. 308-333 ◽  
Author(s):  
Per Höllsberg

SUMMARY The interactions between human T-cell lymphotropic virus type I (HTLV-I) and the cellular immune system can be divided into viral interference with functions of the infected host T cell and the subsequent interactions between the infected T cell and the cellular immune system. HTLV-I-mediated activation of the infected host T cell is induced primarily by the viral protein Tax, which influences transcriptional activation, signal transduction pathways, cell cycle control, and apoptosis. These properties of Tax may well explain the ability of HTLV-I to immortalize T cells. It is not clear, though, how HTLV-I induces T-cell transformation (interleukin-2 [IL-2] independence). Recent evidence suggests that Tax may promote the G1- to S-phase transition, although this may involve additional proteins. A role for other viral proteins that may constitutively activate the IL-2 receptor pathway has also been suggested. By virtue of their activated state, HTLV-I-infected T cells can nonspecifically activate resting, uninfected T cells via virus-mediated upregulation of adhesion molecules. This may favor viral dissemination. Moreover, the induction of a remarkably high frequency of antiviral CD8+ T cells does not appear to eliminate the infection. Indeed, individuals with a high frequency of virus-specific CD8+ T cells have a high viral load, indicating a state of chronic immune system stimulation. Thus, while an activated immune system is needed to eradicate the infection, the spread of the HTLV-I is also accelerated under these conditions. A detailed knowledge of the molecular interactions between virus-specific CD8+ T cells and immunodominant viral epitopes holds promise for the development of specific antiviral therapy.


1987 ◽  
Vol 252 (2) ◽  
pp. R299-R305
Author(s):  
M. A. Brock

Blastogenic responses to T- and B-lymphocyte mitogens were tested in suspensions of splenocytes from 15- and 24- to 28-mo-old C57BL/6 mice and compared with analogous responses in young animals. The mice were housed under constant environmental conditions with alternating light-dark cycles (LD 12:12). Single cell suspensions were cultured in vitro with mitogens, and the induced incorporation of tritiated thymidine by dividing cells was determined. Increases in periodicity of responses to concanavalin A and phytohemagglutinin by T cells and to lipopolysaccharide by B cells and lower mean levels of activation characterized rhythms in cells from 15-mo-old and senescent mice compared with young animals. Amplitudes of the rhythms were unchanged at 15 mo, but by 24 mo of age rhythmic responses of T but not B cells were damped. The separable effects of age on expression of circannual rhythms by T and B lymphocytes suggest another mechanism for imbalance in the immune system. Phases of depressed responses that are extended for several months in populations of older mice could provide increased opportunities for environmental assaults.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 231.1-231
Author(s):  
F. Liu ◽  
H. Zhang ◽  
X. Wang ◽  
J. Feng ◽  
Y. Cao ◽  
...  

Background:Donor-specific anti-HLA antibodies (DSAs) are antibodies in the recipient directed against donor class I/II HLA antigens. The existence of DSAs before allogenic hematopoietic stem cell transplantation (AHSCT) are known to cause primary graft failure. Currently there’s no established method of DSA desensitization due to the long half-life of plasma cells.Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease involving in multiple organ systems mediated by numerous autoantibodies. Recent results have shown that depletion of B cells by CD19 CAR-T cells effectively reversed some manifestations in two SLE mouse models. However, plasma cells could be spared with single CD19 CAR-T cells, and peripheral circulating anti-DNA IgG and IgM autoantibodies remain elevated or increased in treated mice.Objectives:We present the efficacy of BCMA-CD19 compound CAR (cCAR), which target on antibody- producing “root”, both B cells and plasma cells in preclinical study and in our first-in-human phase 1 clinical trial.Methods:We constructed a BCMA-CD19 cCAR composed of a complete BCMA-CAR fused to a complete CD19 CAR, separated by a self-cleaving P2A peptide. We assessed the functional activity of cCAR in co-culture assay with multiple cell lines. We also verified cCAR efficacy with two mouse models, injected with either BCMA-expressing MM.1S cells or CD19-expressing REH cells. In our phase 1 clinical trial, we enrolled patients with hematologic malignancies with antibody mediated disorders.Results:BCMA-CD19 cCAR exhibited robust cytotoxic activity against the K562 cells engineered to express either CD19 or BCMA in co-culture assays, indicating the ability of each complete CAR domain to specifically lyse target cells. In mouse model study, cCAR-T cells were able to eliminate tumor cells in mice injected with MM.1S cells and REH cells, indicating that both BCMA and CD19 are specifically and equally lysing B cells and plasma cells in vivo, making BCMA-CD19 cCAR a candidate for clinical use.In our first-in-human clinical trial, the first case is a 48-year-old female patient having resistant B-ALL with high DSA titers. She exhibited complete remission of B-ALL at day 14 post-CAR T treatment. MFI of DSA dropped from 7800 to 1400 at 8 weeks post cCAR treatment, the reduction percentage was approximately 80% (Figure 1). The patient had no CRS, and no neurotoxicity was observed.Figure 1.1. A) MFI of DSA and other HLA antibodies before and at different time points after cCAR T infusion. B) the percent reduction post-transfusion of cCAR T cells at different time points.The second case is a 41-year-old female patient having a refractory diffuse large B cell lymphoma with bone marrow (BM) involvement. Furthermore, she has a 20 years of SLE, with manifestation of fever dependent of corticosteroids. On day 28 after cCAR treatment, PET/CT scan showed CR, and BM turned negative. In addition, she is independent of steroids, has no fever and other manifestations, C3/C4 are within normal ranges, and all the ANA dropped significantly, especially the nuclear type ANA, which turned from> 1:1000 to be negative at day 64. She had Grade 1 CRS but with no neurotoxicity observed. The absence of B cells and plasma cells persisted more than 5 months post CAR therapy.Conclusion:Our first in human clinical trial on BCMA-CD19 cCAR demonstrated profound efficacy in reducing DSA levels in an AHSCT candidate and ANA titer in a SLE patient. There was strong clinical evidence of depletion of antibody-producing roots, B-cells and plasma cells in both patients. Our results further suggested that BCMA-CD19 cCAR has the potential to benefit patients receiving solid organ transplants or those with other antibody-mediated diseases.Figure 2.Reduction of different type of ANA titer at different time points.Acknowledgments:patients and their familiesDisclosure of Interests:Fang liu: None declared, Hongyu Zhang: None declared, Xiao Wang: None declared, Jia Feng: None declared, Yuanzhen cao Employee of: Employee of iCell Gene Therapeutics LLC, Yi Su: None declared, Masayuki Wada Employee of: employee of iCell Gene Therapeutics LLC, Yu Ma Employee of: employee of iCAR Bio Therapeutics Ltd, Yupo Ma Shareholder of: shareholder of iCell Gene Therapeutics LLC


1998 ◽  
Vol 83 (1-2) ◽  
pp. 57-62 ◽  
Author(s):  
John J Madden ◽  
William L Whaley ◽  
David Ketelsen

Sign in / Sign up

Export Citation Format

Share Document