The Relation Between Glucose Tolerance and Insulin Binding to Circulating Monocytes in Obese Children

PEDIATRICS ◽  
1982 ◽  
Vol 70 (4) ◽  
pp. 633-637
Author(s):  
Kaichi Kida ◽  
Noriyoshi Watanabe ◽  
Yoshiki Fujisawa ◽  
Yoshinori Goto ◽  
Hiroshi Matsuda

The quantitative relation between insulin binding to circulating monocytes in vitro and glucose tolerance in obese children in vivo is reported. Sixty-one obese children and 11 healthy control children participated in this study. The oral glucose tolerance test (OGTT) was performed by giving them glucose (1.75 gm/kg of body weight), orally in the morning, and the binding of 125I-labeled insulin to circulating monocytes in vitro was measured prior to OGTT. The glucose tolerance expressed by ΣBS (milligrams/100 ml), the sum of the plasma glucose (blood sugar [BS]) values at OGTT, was significantly correlated with the degree of overweight (r = .316, P < .01) and more highly with ΣIRI (microunits per milliliter), the sum of immunoreactive insulin (IRI) values at OGTT (r = .512, P < .001). Insulin binding to monocytes in vitro (picograms/106 cells) was inversely correlated with the degree of overweight (r = -. 687, P < .001). Furthermore, ΣBS was inversely correlated significantly with insulin binding to monocytes in vitro (r = -.435, P < .002). These data suggest that the decrease of insulin receptors might be one cause for the impairment of the glucose tolerance associated with obesity in children.

1997 ◽  
Vol 6 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Maria-Angeles Tormo ◽  
Trinidad Leon-Quinto ◽  
Catherine Saulnier ◽  
Danielle Bailbe ◽  
Patricia Serradas ◽  
...  

The present study was designed to identify in a model of noninsulin-dependent diabetes induced by neonatal streptozotocin (n0-STZ), the long-term consequences of an islet graft upon 1) glucose handling of the recipient and, 2) glucose response of the residual β cells in the recipient pancreas. We have examined, 4 and 8 wk after islet implantation under the kidney capsule of syngeneic diabetic n0-STZ rats, their tolerance to glucose administered in vivo, together with their insulin release in response to glucose in vivo (oral glucose tolerance test) as well as in vitro (perfused pancreas). The results in the islet-grafted n0-STZ rats, were compared to those obtained in nongrafted nondiabetic rats and nongrafted n0-STZ rats. Our study shows that transplanting a limited number (900) of adult islets under the kidney capsule reverses to normal, many parameters of the noninsulin-dependent diabetic state in the n0-STZ rat model: these include body weight, basal plasma glucose in both the nonfasted and postabsorptive states, and basal plasma insulin in the postabsorptive state. Furthermore, tolerance to oral glucose administration was greatly improved in the transplanted rats and it was correlated with restoration of a manifest glucose-induced insulin secretion in vivo as evaluated (ΔI) during an oral glucose tolerance test. Our data clearly show that the insulin response to glucose from the endogenous pancreas of n0-STZ diabetic rat was not really improved by long-term (8 wk) basal normoglycemia. More precisely, we were able to detect a slight but significant improvement of the early phase of insulin release in vitro in response to glucose; however, the overall insulin response remained 15 times lower than the normal one with no reapparance of the late phase of insulin release. After cessation of glucose stimulation in vivo, off-response of insulin, which is also a landmark of the impaired insulin release by the β cells of n0-STZ rats, was still detectable in the perfused pancreas of the transplanted n0-STZ rats. Finally, because the reactivity to glucose of the endogenous residual β cells was not regained, the insulin released in vivo during the oral glucose test in the graft-bearing n0-STZ rats can be attributed mainly to functioning of the grafted islets population. Copyright © 1997 Elsevier Science Inc.


1999 ◽  
Vol 277 (4) ◽  
pp. E617-E623 ◽  
Author(s):  
Christophe Broca ◽  
René Gross ◽  
Pierre Petit ◽  
Yves Sauvaire ◽  
Michèle Manteghetti ◽  
...  

We have recently shown in vitro that 4-hydroxyisoleucine (4-OH-Ile), an amino acid extracted from fenugreek seeds, potentiates insulin secretion in a glucose-dependent manner. The present study was designed to investigate whether 4-OH-Ile could exert in vivo insulinotropic and antidiabetic properties. For this purpose, intravenous or oral glucose tolerance tests (IVGTTs and OGTTs, respectively) were performed not only in normal animals but also in a type II diabetes rat model. During IVGTT in normal rats or OGTT in normal dogs, 4-OH-Ile (18 mg/kg) improved glucose tolerance. The lactonic form of 4-OH-Ile was ineffective in normal rats. In non-insulin-dependent diabetic (NIDD) rats, a single intravenous administration of 4-OH-Ile (50 mg/kg) partially restored glucose-induced insulin response without affecting glucose tolerance; a 6-day subchronic administration of 4-OH-Ile (50 mg/kg, daily) reduced basal hyperglycemia, decreased basal insulinemia, and slightly, but significantly, improved glucose tolerance. In vitro, 4-OH-Ile (200 μM) potentiated glucose (16.7 mM)-induced insulin release from NIDD rat-isolated islets. So, the antidiabetic effects of 4-OH-Ile on NIDD rats result, at least in part, from a direct pancreatic B cell stimulation.


2009 ◽  
Vol 160 (5) ◽  
pp. 785-790 ◽  
Author(s):  
Eirini Maratou ◽  
Dimitrios J Hadjidakis ◽  
Anastasios Kollias ◽  
Katerina Tsegka ◽  
Melpomeni Peppa ◽  
...  

ObjectiveAlthough clinical hypothyroidism (HO) is associated with insulin resistance, there is no information on insulin action in subclinical hypothyroidism (SHO).Design and methodsTo investigate this, we assessed the sensitivity of glucose metabolism to insulin both in vivo (by an oral glucose tolerance test) and in vitro (by measuring insulin-stimulated rates of glucose transport in isolated monocytes with flow cytometry) in 21 euthyroid subjects (EU), 12 patients with HO, and 13 patients with SHO.ResultsAll three groups had comparable plasma glucose levels, with the HO and SHO having higher plasma insulin than the EU (P<0.05). Homeostasis model assessment index was increased in HO (1.97±0.22) and SHO (1.99±0.13) versus EU (1.27±0.16, P<0.05), while Matsuda index was decreased in HO (3.89±0.36) and SHO (4.26±0.48) versus EU (7.76±0.87, P<0.001), suggesting insulin resistance in both fasting and post-glucose state. At 100 μU/ml insulin: i) GLUT4 levels on the monocyte plasma membrane were decreased in both HO (215±19 mean fluorescence intensity, MFI) and SHO (218±24 MFI) versus EU (270±25 MFI, P=0.03 and 0.04 respectively), and ii) glucose transport rates in monocytes from HO (481±30 MFI) and SHO (462±19 MFI) were decreased versus EU (571±15 MFI, P=0.04 and 0.004 respectively).ConclusionsIn patients with HO and SHO: i) insulin resistance was comparable; ii) insulin-stimulated rates of glucose transport in isolated monocytes were decreased due to impaired translocation of GLUT4 glucose transporters on the plasma membrane; iii) these findings could justify the increased risk for insulin resistance-associated disorders, such as cardiovascular disease, observed in patients with HO or SHO.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0249239
Author(s):  
Jason A. West ◽  
Anastasia Tsakmaki ◽  
Soumitra S. Ghosh ◽  
David G. Parkes ◽  
Rikke V. Grønlund ◽  
...  

Combinatorial gut hormone therapy is one of the more promising strategies for identifying improved treatments for metabolic disease. Many approaches combine the established benefits of glucagon-like peptide-1 (GLP-1) agonism with one or more additional molecules with the aim of improving metabolic outcomes. Recent attention has been drawn to the glucose-dependent insulinotropic polypeptide (GIP) system due to compelling pre-clinical evidence describing the metabolic benefits of antagonising the GIP receptor (GIPR). We rationalised that benefit might be accrued from combining GIPR antagonism with GLP-1 agonism. Two GIPR peptide antagonists, GIPA-1 (mouse GIP(3–30)NH2) and GIPA-2 (NαAc-K10[γEγE-C16]-Arg18-hGIP(5–42)), were pharmacologically characterised and both exhibited potent antagonist properties. Acute in vivo administration of GIPA-1 during an oral glucose tolerance test (OGTT) had negligible effects on glucose tolerance and insulin in lean mice. In contrast, GIPA-2 impaired glucose tolerance and attenuated circulating insulin levels. A mouse model of diet-induced obesity (DIO) was used to investigate the potential metabolic benefits of chronic dosing of each antagonist, alone or in combination with liraglutide. Chronic administration studies showed expected effects of liraglutide, lowering food intake, body weight, fasting blood glucose and plasma insulin concentrations while improving glucose sensitivity, whereas delivery of either GIPR antagonist alone had negligible effects on these parameters. Interestingly, chronic dual therapy augmented insulin sensitizing effects and lowered plasma triglycerides and free-fatty acids, with more notable effects observed with GIPA-1 compared to GIPA-2. Thus, the co-administration of both a GIPR antagonist with a GLP1 agonist uncovers interesting beneficial effects on measures of insulin sensitivity, circulating lipids and certain adipose stores that seem influenced by the degree or nature of GIP receptor antagonism.


Author(s):  
Evelyne París-Oller ◽  
Cristina Soriano-Úbeda ◽  
Ramsés Belda-Pérez ◽  
Lucía Sarriás-Gil ◽  
Jordana S. Lopes ◽  
...  

Abstract The addition of reproductive fluids (RF) to the culture media has shown benefits in different embryonic traits but its long-term effects on the offspring phenotype are still unknown. We aimed to describe such effects in pigs. Blood samples and growth parameters were collected from piglets derived from in vitro-produced embryos (IVP) with or without RF added in the culture media versus those artificially inseminated (AI), from day 0 to month 6 of life. An oral glucose tolerance test was performed on day 45 of life. We show here the first comparative data of the growth of animals produced through different assisted reproductive techniques, demonstrating differences between groups. Overall, there was a tendency to have a larger size at birth and faster growth in animals derived from in vitro fertilization and embryo culture versus AI, although this trend was diminished by the addition of RFs to the culture media. Similarly, small differences in hematological indices and glucose tolerance between animals derived from AI and those derived from IVP, with a sex-dependent effect, tended to fade in the presence of RF. The addition of RF to the culture media could contribute to minimizing the phenotypical differences between the in vitro-derived and AI offspring, particularly in males.


1986 ◽  
Vol 251 (2) ◽  
pp. E196-E203
Author(s):  
A. Bonen ◽  
P. A. Clune ◽  
M. H. Tan

It has been postulated that the improved glucose tolerance provoked by chronic exercise is primarily attributable to increased insulin binding in skeletal muscle. Therefore, we investigated the effects of progressively increased training (6 wk) on insulin binding by five hindlimb skeletal muscles and in liver. In the trained animals serum insulin levels at rest were lower either in a fed (P less than 0.05) or fasted (P less than 0.05) state and after an oral glucose tolerance test (n = 8) (P less than 0.05). Twenty-four hours after the last exercise bout sections of the liver, soleus (S), plantaris (P), extensor digitorum longus (EDL), and red (RG) and white gastrocnemius (WG) muscles were pooled from four to six rats. From control animals, killed at the same time of day, muscles and liver were also obtained. Insulin binding to plasma membranes increased in S, P, and EDL (P less than 0.05) but not in WG (P = 0.07), RG (P greater than 0.1), or in liver (P greater than 0.1). There were insulin binding differences among muscles (P less than 0.05). Comparison of rank orders of insulin binding data with published glucose transport data for the same muscles revealed that these parameters do not correspond well. In conclusion, insulin binding to muscle is shown to be heterogeneous and training can increase insulin binding to selected muscles but not liver.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Hayat Ouassou ◽  
Touda Zahidi ◽  
Saliha Bouknana ◽  
Mohamed Bouhrim ◽  
Hassane Mekhfi ◽  
...  

Many medicinal plants around the world are used for therapeutic purposes against several diseases, including diabetes mellitus. Due to their composition of natural substances that are effective and do not represent side effects for users, unlike synthetic drugs, in this study, we investigated the inhibitory effect of Caralluma europaea (CE) on α-glucosidase activity in vitro; then the kinetics of the enzyme were studied with increasing concentrations of sucrose in order to determine the inhibition type of the enzyme. In addition, this effect of Caralluma europaea (CE) was confirmed in vivo using rats as an experimental animal model. Among the five fractions of CE, only the ethyl acetate fraction of C. europaea (EACe) induced a significant inhibition of α-glucosidase and its inhibition mode was competitive. The in vivo studies were conducted on mice and rats using glucose and sucrose as a substrate, respectively, to determine the oral glucose tolerance test (OGTT). The results obtained showed that the EACe and the aqueous extract of C. europaea (AECe) have significantly reduced the postprandial hyperglycemia after sucrose and glucose loading in normal and diabetic rats. AECe, also, significantly decreased intestinal glucose absorption, in situ. The results obtained showed that Caralluma europaea has a significant antihyperglycemic activity, which could be due to the inhibition of α-glucosidase activity and enteric absorption of glucose.


2014 ◽  
Vol 52 (2) ◽  
pp. 191-202 ◽  
Author(s):  
Ji Seon Park ◽  
Su Jung Bae ◽  
Sik-Won Choi ◽  
You Hwa Son ◽  
Sung Bum Park ◽  
...  

Selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) have considerable potential as treatment for osteoporosis as well as metabolic syndrome including type 2 diabetes mellitus. Here, we investigated the anti-diabetic, anti-adipogenic, and anti-osteoporotic activity of KR-67500, as a novel selective 11β-HSD1 inhibitor. Cellular 11β-HSD1 activity was tested based on a homogeneous time-resolved fluorescence method. Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) levels were measured in diet-induced obese (DIO)-C57BL/6 mice administered KR-67500 (50 mg/kg per day, p.o.) for 28 days and, additionally, its anti-diabetic effect was evaluated by OGTT and ITT. Thein vitroanti-adipogenic effect of KR-67500 was determined by Oil Red O Staining. Thein vitroanti-osteoporotic activity of KR-67500 was evaluated using bone morphogenetic protein 2 (BMP2)-induced osteoblast differentiation and receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation model systems. KR-67500 improved thein vivoglucose tolerance and insulin sensitivity in DIO-C57BL/6 mice. KR-67500 suppressed cortisone-induced differentiation of 3T3-L1 cells into adipocytes. KR-67500 enhanced BMP2-induced osteoblastogenesis in C2C12 cells and inhibited RANKL-induced osteoclastogenesis in mouse bone marrow-derived macrophages. KR-67500, a new selective 11β-HSD1 inhibitor, may provide a new therapeutic window in the prevention and/or treatment of type 2 diabetes, obesity, and/or osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document